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Abstract

Should Big Tech firms be allowed to acquire other firms? We address this question

by developing a model of platform-based consumption. The platform supplies some

of the products in the economy and startups supply the rest. The platform shares only

part of its appeal with startups (“tying”), balancing the incentive to increase sales of

its own products against the desire to attract consumers to the platform. The chance to

be acquired by the platform provides a motive for startup entry. But acquisitions also

expand the platform’s product offerings, increase tying, and lower the profits of non-

acquired startups which are the other motive for entry. Theoretically, an acquisition

ban reduces growth in the short run but may increase it in the long run. Calibrating

the model to data on U.S. households’ time use on digital platforms suggests very

minor welfare gains from an acquisition ban.
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1 Introduction

Policymakers are increasingly focused on competition and growth in digital markets.

Legislation in the United States, United Kingdom, and European Union has singled

out the acquisitions of the “GAFAM” (Google, Amazon, Facebook, Apple, and Mi-

crosoft) firms for scrutiny or even bans because of their role as ‘’gatekeepers” or ‘’cov-

ered platforms.” Much of the concern among regulators is about the effect of these

acquisitions on economic growth, in contrast to the longstanding approach of com-

petition authorities to evaluate static tradeoffs between increased market power and

greater efficiency when designing merger policy (OECD 2023).

Because platform technologies are new, and because competition authorities have

only recently begun to consider the dynamic effects of merger policy, there is a lack

of economic theory about the effects of platform acquisitions on growth. This paper

aims to fill this gap by developing an endogenous growth model with platform-based

consumption. Our framework allows us to assess competing views about the role of

platform acquisitions in spurring entry. One view is that the chance to be acquired

creates an extra incentive for startup founders on top of the profits they expect to gen-

erate as a standalone firm, so-called “entry for buyout” (Rasmusen 1988; Fons-Rosen,

Roldan-Blanco, and Schmitz 2024). On the other hand, the presence of a dominant

“digital ecosystem” with many integrated products and services sold by a platform

may make it hard for standalone firms to make profits in the first place (Khan 2017).

The paper makes two main contributions. The first is to develop a novel model

where platform acquisitions have both positive and negative effects on growth to

capture the dynamic tradeoffs regulators face. The second is to bring the model to

the data to see which effect dominates. The negative ecosystem dominance effect on

entry is slightly stronger than the positive option value of acquisition effect. The wel-

fare change from an acquisition ban is therefore positive in the baseline calibration,

around 0.08% of consumption-equivalent welfare. However, the welfare effect of an

acquisition ban can turn negative with small and reasonable changes to key model

parameters. Alternative competition policies, like prohibiting self-preferencing of the

platform’s own products in search results or requiring interoperability between the

platform and third party sellers, can improve welfare much more than an acquisition

ban without hampering entry.

The model features two activities by platforms that regulators are concerned about.

The first is acquisitions of other firms. The second is product tying, a term we use to
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encompass a broad range of behaviors platforms can engage in that tilt consumption

toward their own products relative to goods sold by third parties on the platform. For

example, a platform can display its own products prominently in search results (Wald-

fogel 2024), reduce the quality of competing apps by limiting interoperability (Morton

2023), or bundle products and services into its existing digital ecosystem (Choi 2010).1

Using the platform provides utility benefits to households, some of which depend

on the overall intensity of use of the platform (capturing network effects), and some

of which do not (such as reduced search costs). Households take as given the number

and quality of products available on the platform and choose how much to use the

platform each period. The platform firm faces a tradeoff when it decides how much

to engage in product tying. Tying increases the attractiveness of the platform’s prod-

ucts relative to third-party products, thus increasing profits on each product line the

platform owns. On the other hand, it discourages households from using the platform

altogether, which depresses demand, lowering sales and profits.

The platform adds new goods to its product portfolio by acquiring standalone

firms, who we call startups. When the platform engages in tying, such meetings gen-

erate a surplus and both parties would like to merge. From a consumer perspective,

acquisitions increase the quality of the target firm’s product and the target’s sales in-

crease post-acquisition. If this were the only effect of acquisitions, they would be

unambiguously good for consumers. However, the model also captures an “ecosys-

tem dominance” theory of harm: acquisitions make it less costly for the platform to

engage in tying because households have a greater incentive to use the platform when

it supplies a larger share of the products in the economy.

The first theoretical result is that platform acquisitions have ambiguous effects on

entry (and thus growth and welfare) in the long run. On one hand, the option value of

acquisition induces more entry by startups. On the other hand, new to our paper, ac-

quisitions increase tying, lowering startups’ standalone value before acquisition and

discouraging entry. We derive a condition such that an acquisition ban has positive

long-run effects on growth. An acquisition ban is more likely to increase growth when

the option value of acquisition is low compared to the responsiveness of standalone

profits to ecosystem dominance. These two channels can be directly linked to mea-

surable objects in the data.

The second result is that, even if an acquisition ban increases growth in the long

run, it necessarily involves sacrificing growth in the short run because entry for buy-

1See Motta (2023) for a summary of such practices.
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out incentives change immediately while the costs of tying diminish slowly as the

platform’s ecosystem dominance erodes through the entry of new startups. This re-

sult leads us to focus on transition paths rather than steady-state comparisons when

evaluating different competition policies.

The model has one novel parameter, the platform’s appeal technology, that we cal-

ibrate using the model’s mapping from this technology parameter to household time

spent using the platform. In the calibrated model an acquisition ban increases steady

state consumption-equivalent welfare by 0.18% by increasing the steady state entry

rate. However, because a ban reduces entry in the short run, the properly discounted

welfare over the transition increases by just 0.08%. For slightly higher values of startup

bargaining power in merger negotiations or lower values of the platform technology

parameter, which both seem plausible, the welfare effect of an acquisition ban over the

transition is negative. A ban on tying yields significantly higher welfare gains than

an acquisition ban, primarily by correcting platform under-utilization due to tying in

the competitive equilibrium but also by increasing the entry rate.

We consider two extensions of the model. In an extension where the platform sells

its appeal to startups as a service rather than changing their appeal directly through

tying, we provide an alternative micro-foundation for the tying mechanism. The plat-

form chooses a markup on its service that is even higher than the standard monopo-

listic markup to boost sales of its own products. This strategic incentive is the same

as in the baseline model.

In a second extension with idiosyncratic productivity shocks and exit, the platform

generates negative selection. Tying raises the platform’s profits on low-productivity

goods and makes them less likely to be shut down, whereas startups shut down too

quickly from a planner’s perspective. OECD (2023) emphasizes the importance of

considering this sort of quality effect in digital markets since network effects and

ecosystem dominance make it hard to displace low-quality incumbents.

A final contribution of the paper is to document new stylized facts about plat-

form firms and their acquisitions. The cross-industry acquisitions we study constitute

about 70% of all platform acquisitions. These acquisitions span a large set of indus-

tries: 61% of all U.S. industries experienced at least one platform acquisition between

2010-2020. Lastly, we provide measures of the aggregate importance of platforms

based on retail sales, revenues, stock market valuations, and time use surveys.
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Related Literature. This paper is related to two strands of literature in macroe-

conomics. The first studies the market for firms and its effects on firm dynamics,

growth, and welfare.2 The most closely related paper is Fons-Rosen, Roldan-Blanco,

and Schmitz (2024), who analyze the growth effects of acquisitions when incumbents

have a commercialization advantage for new ideas but may “kill” competing products

in the same industry.3 Our contribution is to introduce a new mechanism about cross-

industry acquisitions, which account for 70% of platform acquisitions in recent years,

into the discussion. In our model, the platform is special because it provides a service

that is complementary to all goods in the economy. Acquisitions enhance the qual-

ity of the acquired product and are bilaterally efficient, but have negative spillovers

to non-acquired firms due to increased ecosystem dominance. We view our work on

cross-industry acquisitions as complementary to the literature on killer acquisitions.

The second literature we contribute to studies the emergence and welfare effects

of platforms4 and of digital technologies more broadly.5 Rachel (2024) models how

the rise of digital platforms altered the direction of innovation toward leisure tech-

nologies. Greenwood, Ma, and Yorukoglu (2024) and Cavenaile et al. (2023) study

the welfare implications of targeted digital advertising. Dolfen et al. (2023) measure

how the growth of e-commerce benefited consumers through better consumer-firm

matches and lower search costs. Our primary contribution is to model product tying,

a key feature of platforms’ strategic behavior, and to use a dynamic general equilib-

rium model to understand the way that tying and acquisitions interact to affect entry.

There is also a body of partial equilibrium studies of mergers and acquisitions

(M&A) in digital markets.6 Our model formalizes Cabral (2021)’s argument that

2See Atalay, Hortaçsu, and Syverson (2014), David (2020), Bhandari and McGrattan (2020), Bhandari,

McGrattan, and Martellini (2025), Weiss (2023), Celik, Tian, and Wang (2022), Chatterjee and Eyigungor

(2023), Liu (2023), Berger et al. (2025). Relatedly Akcigit, Celik, and Greenwood (2016) study the market for

patents and Pearce and Wu (2023) study the market for trademarks. These papers, and ours, build on in-

sights from earlier research about motives for mergers ranging from capital reallocation, complementarities

between firms, and economies of scale (Jovanovic and Rousseau 2002; Rhodes-Kropf and Robinson 2008;

Hoberg and Phillips 2010; Mermelstein et al. 2020).
3See also Cunningham, Ma, and Ederer (2020) and Kamepalli, Rajan, and Zingales (2020).
4See Rochet and Tirole (2003) and (2006), Brynjolfsson, Chen, and Gao (2025), and Alvarez et al. (2025).
5On data, see Begenau, Farboodi, and Veldkamp (2018), Jones and Tonetti (2020), Beraja, Yang, and

Yuchtman (2022), Farboodi and Veldkamp (2023). On digital advertising, see Acemoglu et al. (2024), and

Baslandze et al. (2023).
6There is work on the theoretical side (Bryan and Hovenkamp 2020; Motta and Peitz 2021; Eisfeld 2023;

Heidhues, Köster, and Kőszegi 2024) and the empirical side (Warg 2023; Ederer and Pellegrino 2023; Hoberg
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merger policy is a blunt tool to address competition in digital industries. Kaplow

(2021) calls for a multi-sector, dynamic analysis of digital merger policy because acqui-

sitions can create cross-industry distortions. We develop and quantify such a model.

Beyond merger policy, Evans and Schmalensee (2014) summarize antitrust issues,

including tying, in platform-based markets.7 Gutiérrez (2023) provides a case study

of Amazon’s fee structure and analyzes the welfare effects of separating Amazon’s

retail and platform businesses. Several papers study competition, interoperability,

and fee design among different platforms.8 While we abstract from many of these

interesting issues in service of parsimony, we bridge the gap between this literature

and the growth literature by incorporating platform tying into a growth model.

2 Platforms: Recent Trends

Two trends inform our analysis. First, platform-based firms have acquired other firms

in a large and diverse set of industries. Second, to motivate a general equilibrium

model of consumption through a platform, we provide evidence that such consump-

tion is becoming an important share of overall economic activity.

Cross Industry Acquisitions. The SDC Platinum Database records the universe

of M&A deals over $1 million involving U.S. firms from 1990 onwards. Information

on each deal includes the acquirer name, target name, transaction price, industry clas-

sification and some financial information for publicly listed parties. To this dataset we

add VentureXpert data on target age and number of employees and use a fuzzy match-

ing procedure to add data on patents from the U.S. Patent and Trademark Office.9 We

focus on GAFAM, motivated by the policy discussion around these particular firms

because of their role as platforms, but compare the statistics for GAFAM to the same

statistics for other large acquirers. The sample period is 2010-2020.

and Phillips 2024).
7See also Fumagalli and Motta (2020) and Ide and Montero (2024).
8See Athey and Morton (2022), Lu, Goldfarb, and Mehta (2024), Jeon and Rey (2024), and Ekmekci,

White, and Wu (2024).
9Appendix Table A.1 provides summary statistics about platform-based firms’ acquisitions and contrasts

them with deal and target characteristics for other large acquirers. The platforms did more acquisitions on

average from 2010-2020 compared to other large acquirers, acquired younger targets, and acquired targets

with a higher chance of having patents and lower chance of having positive earnings prior to acquisition.
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GAFAM Top 25 Tech Top 25 PE Top 25 S&P

NAICS6, % 83 81 64 61

SIC4, % 74 79 65 60

SDC Tech. Class., % 69 59 48 46

B2C Targets, % 27 8 3 3

Number of deals 467 1114 3790 3498

Table 1: Percent of acquisitions where acquirer (and acquirer’s ultimate parent) and target have

different primary industry codes. “GAFAM”: Google, Apple, Facebook, Amazon, and Microsoft.

Other groups are constructed following Jin, Leccese, and Wagman (2023a): the largest non-

GAFAM acquirers in Forbes’ ranking of Top 100 Digital Companies (“Top 25 Tech”), the largest

private equity firms by Private Equity International (“Top 25 PE”) and the other largest 25 firms

by number of acquisitions in the S&P database (“Top 25 S&P”). Source: SDC Platinum, 2010-2020

and Jin, Leccese, and Wagman (2023a) for B2C targets data.

Most GAFAM acquisitions are cross industry, regardless of the specific way we

define an industry (Table 1, column 1). The most conservative definition, the SDC

Platinum’s own classification scheme, gives a cross-industry share of 69%. Using 6-

digit NAICS gives a cross-industry share of 83%. Comparing GAFAM to other large

acquirers shows that they are more likely than other acquirers to engage in cross indus-

try acquisitions. Our findings are consistent with previous evidence that only a small

fraction of Big Tech targets operated a platform or other competing service (Argentesi

et al. 2020; Parker, Petropoulos, and Alstyne 2021; Jin, Leccese, and Wagman 2023a;

Jin, Leccese, and Wagman 2023b). Platform firms are also much more likely than

others to acquire purely “B2C” firms, that is, final goods producers. Prominent exam-

ples of cross-industry acquisitions include Google’s acquisition of FitBit, Amazon’s

acquisitions of Whole Foods, MGM Studios, and iRobot, and Microsoft’s acquisition

of LinkedIn. Google’s first acquisitions in 2004 of Where2, Keyhole, and ZipDash

enabled the creation of Google Maps.

Platform acquisitions are important from a macroeconomic perspective and im-

pact a broad swath of industries; 61% of all NAICS4 industries in the U.S., accounting

for 55% of GDP, experienced at least one GAFAM acquisition between 2010 and 2020,

suggesting that acquisitions reach well beyond closely related digital services firms.
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Importance of Platforms in the Economy. Measuring the share of economic ac-

tivity that flows through platforms is challenging. We present several measures of the

importance of platform-based firms and discuss the limitations of each.

One possible measure is e-commerce. Since 2000, e-commerce retail sales have

grown 16% per year, compared to 4% for total retail sales. e-commerce now accounts

for 16% of all retail sales and continues rapidly expanding. Retail sales in turn account

for about 10% of total private final consumption expenditure. Not all e-commerce is

done through platforms, so this may overstate the importance of platforms, though

Amazon alone controls 40% of the U.S. e-commerce market (Forbes 2024).

On the other hand, Big Tech firms do not just sell to final consumers, they also

sell their products, such as Microsoft Office or Amazon Web Services, to other firms,

which is missed in retail sales. Taking a broader view based on total revenues, the

share of these five companies in total U.S. non-farm, non-financial corporate revenues

was 11% in 2021.10

A final way to measure the significance of digital platforms is time use (Rachel

2024). A representative survey from Nielsen’s (2021) for the U.S. population shows

3.8 total hours spent online each day between computers and mobile devices. A dif-

ferent 2023 survey found that U.S. users spent 4.2 hours per day on various social

media platforms (Emarketer 2023). Restricting attention to online shopping, house-

holds spend a little over an hour per week (SWNS 2024). When we bring the model in

the next section to the data we match the platforms’ share of total revenue and explore

the effect of an acquisition ban under various targets for platform time use.

3 Baseline Model

The economy consists of a growing mass of products whose consumption by house-

holds is intermediated by a platform. An online retail platform like Amazon is a

natural example.11 Some products are produced by the platform itself (e.g. Ama-

10One way to assess how important these firms are expected to be in the future is to use price to equity

ratios to infer future earnings growth as in Boppart et al. (2024). The GAFAM firms are all among the top

ten firms expected to contribute the most to future earnings growth. As of March 2025 these five companies

had a combined market capitalization of $12 trillion and made up 25% of the S&P500.
11Other examples include app stores operated by Apple, Microsoft and Google, the integration of third

party mobile games and apps into Facebook’s platform alongside Facebook-owned apps like Instagram and

WhatsApp, or streaming platforms like Netflix that offer their own content alongside third party content.
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zon Basics) and the rest are sold by third party sellers who we call startups. House-

holds choose how much time to spend using the platform, with greater use improv-

ing the shopping experience but incurring a time cost. Potential new startups make a

forward-looking entry decision. Time is continuous.

3.1 Environment

Household. A representative household suppliesLt total units of labor and derives

utility from real consumption Ct. The household’s discounted utility is given by:∫ ∞
0

e−ρt [logCt − Lt] dt. (1)

Real consumption is aggregated across products i ∈ [0, Nt], where Nt is the mea-

sure of products available at time t, using a constant elasticity of substitution (CES)

aggregator. Specifically,

Ct =

[∫ Nt

0
α

1
σ
it c

σ−1
σ

it di

] σ
σ−1

, (2)

where σ > 1 is the elasticity of substitution across products, cit is the quantity, and

αit is a demand shifter related to the platform’s intermediation role that we explain

shortly.

Labor Lt is devoted to three activities. Among these activities, LY,t is used for

production of consumption goods and LE,t is used to start new businesses, both of

which earn labor income to the household. The remaining LP,t is spent using the

platform, which does not earn labor income. Throughout the paper, the wage rate is

normalized to 1. All three activities trade off with leisure time. The household owns

a representative portfolio of all firms that pays out the aggregate profits as dividends.

The household’s budget constraint is thus

ȧt = rtat + LY,t + LE,t + Πt −
∫ Nt

0
pitcitdi,

where at is savings in the representative portfolio, rt is the interest rate, Πt is the

aggregate profit of firms in the form of a dividend, and pit is the price of product i.

Three results follow, derived in Appendix B.1. First, there is the Euler equation for

consumption-saving decisions rt = ρ. Second, the household’s consumption decision

implies a standard CES demand curve for each good:

cit = αit

[
pit
Pt

]−σ
Ct, (3)
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where

Pt ≡
(∫ Nt

0
αitp

1−σ
it di

) 1
1−σ

(4)

is the quality-adjusted aggregate price index. Lastly, the perfectly elastic labor supply

implies that aggregate expenditure is always PtCt = 1.

Production. The Nt products can be categorized according to their ownership at

time t: NPt products are sold by the platform, and NSt products are sold by star-

tups. Labor is the only input to production and all producers have a constant labor

productivity of one.

Product Quality with Platform-Based Consumption. The key novelty of the

paper is that the platform firm intermediates consumption of all products, in addition

to its role as a producer. This intermediation process determines quality αit for each

good i in the following way

αit =

1 + LP,tγ platform products (P)

1 + LP,tγ(1− δt) startup products (S)
, δt ∈ [0, 1]. (5)

Each product has a baseline quality of 1 (e.g. the quality if bought offline). On top of

this, the platform firm is endowed with a technology γ that increases the quality of

products consumed through the platform (e.g. by reducing search costs). The tech-

nology γ complements household time spent using the platform LP,t (e.g. time use

generates product ratings data which improves the shopping experience).

The platform decides how much of its technology γ to share with startups in a

decision we call tying,12 represented by δt. When there is no tying by the platform

(δt = 0), the platform technology is fully shared with startups and the goods look

identical from a consumer perspective, whereas when δt > 0 the startups have lower

quality. The choice of tying represents a range of behaviors the platform can engage

in to decrease the appeal of third-party products. For example, promoting its own

products in search so that finding startup products takes longer (Waldfogel 2024),

bundling platform-owned products together (OECD 2023), limiting sellers’ access to

data and back-end code to reduce interoperability (Kamepalli, Rajan, and Zingales

12Tying is used in industrial organization to refer to situations where two goods must be bought together.

More recently, technical tying has been used to refer to design features, like integrated digital ecosystems,

that make it difficult to consume one good without accessing another.
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2020), or reducing the performance of third-party apps on the platform (Department

of Justice 2024). Section 7.1 considers an alternative assumption that the platform sells

its technology as a service to startups and faces a cost to providing these services,

relaxing the assumption that sharing the platform’s technology is costless. Similar

strategic incentives arise in that alternative model.

Entry Dynamics. The measure of startups NSt grows when new startups enter

and shrinks when existing startups are acquired by the platform. A large measure of

potential entrants can create new startups using labor. The entry cost is declining in

the stock of varieties Nt as in Romer (1990) and increasing in the growth rate of new

varieties (Acemoglu et al. 2018; Klenow and Li 2025). More specifically, at time t, the

entry cost is κ(gt)
Nt

where

κ(g) = κgη,

and η ≥ 0. After entering the startup’s product line stays in operation forever.13 At

t = 0, we assume the economy starts with N0 products and N0 > 0.

Acquisition Dynamics. The platform expands its product offerings NPt by ac-

quiring startups through a frictional trading process. The platform meets individual

startups at Poisson rate µ, which we refer to as the acquisition rate. Upon meeting, the

platform and the startup decide whether to carry out the acquisition. If they agree,

they engage in Nash bargaining over the joint surplus created by the acquisition, with

bargaining power β for the startup. When the platform engages in some tying (δt > 0),

acquisitions improve the quality of the acquired product, capturing a form of syner-

gies. An acquisition ban is modeled as regulators setting µ to zero by blocking all

platform acquisitions.

Ecosystem Dominance. A core new endogenous object of our model is the share

of platform goods

ιt ≡
NPt

Nt
.

We call ιt the ecosystem dominance of the platform. The platform’s ecosystem is domi-

nant if it sells a large share of total goods (e.g., having a wide range of products from

clothing to electronics to cloud services to video streaming). Ecosystem dominance

grows through acquisitions but shrinks as new startups are founded.

13An extension with productivity shocks and endogenous exit is developed in Section 7.2.
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Discussion. Before characterizing the equilibrium of the model, we discuss the eco-

nomic content of the model’s new ingredients. First, we assume that the platform

increases the product’s intrinsic quality. This is a reduced-form representation of the

role of platforms in the consumption process, which could encompass improved ser-

vice quality or reduced shopping costs. An alternative way to model the platform

is through greater production efficiency. Regarding theoretical predictions, the pro-

ductivity model is isomorphic to the present model. Second, although our model has

only one platform, this single platform does face competition. This competition comes

from the substitution of consumption between platform-owned products and startup

products, and household substitution between platform use and leisure.14

3.2 Equilibrium

This section first solves for the static pricing equilibrium to obtain firm profits, taking

platform use and tying as given. Then we solve the more novel tying and platform use

decisions. These two steps yield firm profits as a function of the platform’s ecosystem

dominance. The final step studies the evolution of ecosystem dominance ιt and the

growth rate gt in the full dynamic equilibrium.

Pricing Equilibrium. In the baseline model, we assume that all products (regard-

less of whether the platform or a startup supplies them) compete in a monopolisti-

cally competitive manner. Section 6.1 considers the case where the platform prices

its products jointly, leading the platform to charge a variable markup and creating an

additional distortion from ecosystem dominance. 15

A standard argument implies that all products are priced at a constant markup

over marginal cost (in this case the wage, which is normalized to 1). Thus the price is

simply σ
σ−1 . Given these prices, the price index for the household can be rewritten

Pt =
σ

σ − 1︸ ︷︷ ︸
markup

×

 Nt︸︷︷︸
love of variety

×
(

1 + γLP,t(ιt + (1− ιt)(1− δt))
)

︸ ︷︷ ︸
platform


1

1−σ

, (6)

14The revenue sharing extension in Section 7.1 also explicitly represents competition in the platform ser-

vice market.
15The calibrated model also assumes joint pricing. Our focus is on the growth effects of platform acqui-

sitions rather than static distortions, so we focus on constant markups here for tractability. Quantitatively,

we find that the welfare costs of acquisitions for growth are larger than the costs due to markups (Table 4).
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by substituting qualities (5) into the price index (4). The price index has three compo-

nents. Two of them, markups and the love of variety, are standard. The third is new:

the platform’s technology γ, ecosystem dominance ιt, tying δt, and the household’s

platform time use LP,t all affect the price of real consumption. All else equal, the price

of real consumption falls when

i. the household spends more time using the platform
(
∂Pt
∂LP,t

< 0

)
,

ii. the platform reduces tying
(
∂Pt
∂δt

> 0

)
,

iii. more products are in the platform’s ecosystem
(
∂Pt
∂ιt

< 0 when δt > 0

)
.

Point (iii) says that statically, acquisitions benefit consumers through quality syner-

gies.

Before explaining the determination of equilibrium platform time use, ecosystem

dominance, and tying, it is helpful to solve for the firms’ profits given these variables.

We will focus on balanced growth paths (BGPs) where the entry rate is constant so

that Nt grows at a constant rate. On such a BGP the earnings of all firms decrease

exponentially because the number of varieties is growing. We characterize the profits

at time t as πS,t
Nt

for the startups and πP,t
Nt

for each platform product. On a balanced

growth path, πS,t and πP,t are constant. We refer to these as the (detrended) profits:

πp,t =
1

σ

1 + γLP,t
1 + γLP,t(ιt + (1− ιt)(1− δt))

, (7)

πs,t =
1

σ

1 + γLP,t(1− δt)
1 + γLP,t(ιt + (1− ιt)(1− δt))

. (8)

In (7) and (8), 1
σ is the profit margin because all firms charge a constant markup σ

σ−1 . In

a standard Romer (1990) model, total profits for all firms are also 1
σ because all firms

have one unit of revenue. In the present model, however, the platform introduces

dispersion between its own profits and those of startups by using tying to change

revenues. We later show tying δt > 0 for any level of ecosystem dominance, so that

πP,t >
1
σ > πS,t. Thus, by lowering the perceived quality of startup products, the

platform gains an advantage for its own products. This strategic incentive introduces

novel implications for growth, as we show later.
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Platform Time Use. The household takes tying and prices as given and chooses

how much time to spend using the platform.16 The household faces a trade-off be-

tween leisure time and higher real consumption when choosing LP . The optimal

choice equates the marginal benefit and marginal cost of using the platform. The

household’s problem can be written

LP,t = arg max
LP

logCt − LP = arg max
LP
− logPt − LP , (9)

s.t.

equation (6).

The solution is

LP,t = max

{
1

σ − 1
− 1

γ(ιt + (1− ιt)(1− δt))
, 0

}
. (10)

The key result is that the households’ platform time use is decreasing in the plat-

form’s tying δt as long as ecosystem dominance is less than one, but is less sensitive

to tying the higher is ecosystem dominance.

Tying. The platform chooses tying to maximize profits (7) taking into account the

effect of tying on household platform use (10).17 This introduces the key tradeoff:

tying increases the relative attractiveness of the platform’s own products compared

to startups, but reduces household platform use, thereby depressing demand for all

goods through the platform, including the products operated by the platform itself.

The optimal tying choice is

δt = min

{
γ − (σ − 1)

γ + (σ − 1)

1

(1− ιt)
, 1

}
. (11)

The solution is plotted in Figure 1a. Tying increases in the platform’s ecosystem

dominance ιt and in the platform technology γ, until it reaches one (full tying). Tying

is positive even when the platform sells a very small share of products (ιt = 0) because

the effect of discouraging platform use in (10) is zero when δ = 0.18 As the platform

16The representative household stands in for many individual households so this assumption is reason-

able. The representative household assumption abstracts from positive externalities of platform use across

households that are an additional source of platform under-utilization, but that is not the focus of this paper.
17The assumption that the tying decision is without attention to the acquisition market is without loss of

generality, given our assumption about Nash bargaining over the merger surplus.
18At that point, the startups’ products and the platform products are identical, so any change in platform

time use will not affect the platform’s profits directly. Any lost profit from platform products will be directly

compensated by reallocated market shares from competitors.
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Figure 1: Ecosystem Dominance: Effects on Tying and Household Platform Time Use
Note: Platform tying and household platform use as functions of the platform’s ecosystem dominance for

the baseline platform technology γ (solid lines) and a γ that is 20% higher (dashed lines). Vertical lines

indicate the level of ecosystem dominance where maximal tying is reached. Parameters in Table 2.

approaches full ecosystem dominance (ιt → 1), platform use no longer responds to

tying since the platform de facto owns all products; this leads to full tying in this

limit. It is possible to reach full tying for interior values of ecosystem dominance, and

full tying is reached faster when the platform technology γ is better.

Equilibrium platform time use is plotted in Figure 1b. When tying is less than

one, an increase in ecosystem dominance has two competing effects on platform time

use that are exactly offsetting: first, holding tying fixed, greater ecosystem dominance

would have the direct effect of incentivizing households to use the platform more.

However, the platform uses this opportunity to increase tying enough to exactly offset

the direct effect, keeping equilibrium platform time use unchanged. For interior tying

(δ < 1), equilibrium platform use is

LP =
1

2

(
1

σ − 1
− 1

γ

)
. (12)

Once maximal tying is reached, the tying effect isn’t present anymore and households’

platform time use begins to increase in ecosystem dominance.

Comparing the solid and dashed lines in Figure 1b, which represent different val-

ues of the platform technology γ, gives a sense of how we identify γ in the calibration.

Conditional on the elasticity of substitution, equation (12) provides a direct mapping

from data on platform time use to the platform technology parameter γ: more plat-
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Figure 2: Startup Profits Decline in Ecosystem Dominance
Note: Startup profits (blue) and platform profits (green) as functions of the platform’s ecosystem dominance

using the parameters in Table 2. Vertical line is the calibrated value of ecosystem dominance (Section 6).

form time use suggests the platform technology is better.

Finally, given equilibrium tying and platform use, Figure 2 shows firm profits

(equations (7) and (8)). Startup profits fall as ecosystem dominance rises because time

use is fixed and tying is increasing in ecosystem dominance (for interior tying).19

Dynamic Equilibrium. The entry rate (equivalently the growth rate gt) depends

both on the forward-looking value of a startup and the forward-looking value of a

platform product because the latter determines the surplus created from acquisitions.

We denote the detrended value of a platform product line as vPt and that of a startup

as vSt. In other words, the value of these firms at t is vPt
Nt

and vSt
Nt

, where

(gt + ρ) vPt = πs(ιt) + v̇Pt, (13)

and

(gt + ρ) vSt = πs(ιt)︸ ︷︷ ︸
Profits

+ µβ (vPt − vSt)︸ ︷︷ ︸
Option Value of Acquisition

+ v̇St. (14)

The derivations are in Appendix B.2. The platform and startups have the same dis-

count rate gt + ρ. Their values differ in two regards: the platform has weakly higher

flow profits (strictly higher when tying is positive); the startups additionally receive

19Platform profits per product line start to fall once maximal tying is reached because platform products

begin to cannibalize each other.

16



the option value of acquisition. The startup meets the platform for acquisition at rate µ.

In these events, the startup receives a share β of the surplus vPt − vSt.
Positive entry requires that new startups must be indifferent about whether to

enter, that is, κ (gt) = vSt. Combining this with the value function yields the free-

entry condition which must hold for any instant t:

(gt + ρ)κ (gt) = πs(ιt) + µβ (vPt − κ (gt)) + κ′ (gt) ġt. (15)

Integrating equation (13) gives the value of a platform product for any path of

growth rates. We thus treat vPt as a known function from here on. From the free entry

condition, we can derive the equilibrium growth rate.

Ecosystem dominance changes over time according to the following law of mo-

tion:

ι̇t = µ− (gt + µ)ιt. (16)

Given a fixed growth rate, a higher acquisition rate µ increases the ecosystem domi-

nance of the platform. Given a fixed acquisition rate, a higher startup rate gt decreases

the ecosystem dominance of the platform. Our definition of a dynamic equilibrium

thus involves two equations for {ιt, gt}.

Definition 1. A dynamic equilibrium is a combination of two functions {ιt, gt} such that

equation (15) and equation (16) hold.

Other Equilibrium Objects. There are two other equilibrium objects that are welfare-

relevant. These can be written as analytical functions given a dynamic equilibrium.

We summarize these objects in the following lemma.

Lemma 1. Given {ιt, gt}:
(Real consumption)

Ct =
σ

σ − 1︸ ︷︷ ︸
markup

×

N0e
∫ t
0 gsds︸ ︷︷ ︸

love of variety

×
(

1 + γLP,t(ιt + (1− ιt)(1− δt)))
)

︸ ︷︷ ︸
platform


1

1−σ

.

(Labor)

Lt =

∫ Nt

0
ci,tdi+ κ(gt)gt + LP,t. (17)

Equation (17) tallies the total labor supplied to production, creation of new firms,

and platform time use. Total entry costs are κ(gt)× gt (the per-entrant cost is κ(gt)
Nt

).
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3.3 Special Case: Balanced Growth Path

On a balanced growth path, the growth rate and the platform’s ecosystem dominance

are both constants, denoted as g∗ and ι∗. Given ecosystem dominance ι∗, the BGP

growth rate must be consistent with the free-entry condition of the startups:

(g∗ + ρ)κ(g∗) = πs(ι
∗) + µβ

(
πp(ι

∗)

g∗ + ρ
− κ(g∗)

)
.

Given the growth rate, ecosystem dominance must also stay constant:

ι∗ =
µ

µ+ g∗
.

The balanced growth path equilibrium can be analyzed on a 2-dimensional plane

of g∗ and ι∗, depicted in Figure 3a. The free-entry condition imposes a downward-

sloping relationship between ecosystem dominance and growth rate: higher ecosys-

tem dominance leads to more tying and lower profits for the startups, which dis-

courages entry; the steady-state condition for ecosystem dominance requires another

downward-sloping relationship between ecosystem dominance and the growth rate:

a lower growth rate leads to more ecosystem dominance. The equilibrium pair (g∗, ι∗)

is the intersection of these two curves.

4 Effect of An Acquisition Ban on Growth

We now return to the central question of the paper: what happens to the economy’s

growth rate if policymakers regulate platform acquisitions more strictly? This section

considers the case of a total acquisition ban, and Appendix B.5 derives similar results

for small, local changes in the acquisition rate.

The model is simple enough to analytically characterize the path of the economy’s

growth rate over the transition from a balanced growth path with acquisitions to one

without acquisitions if we make a standard assumption about the form of entry costs

(Romer 1990). The assumption needed is that the entry cost is constant: κ(g) = κ, that

is, η = 0.

Suppose the economy is on a balanced growth path with µ > 0 and equilibrium

(g∗o , ι∗o,. At time 0, the government bans platform acquisitions, setting the acquisition

rate µ = 0. Given this policy, the platform’s ecosystem dominance monotonically de-

cays at rate gt starting from the “old” ecosystem dominance ι0 = ι∗o following equation

(16). The transition path of ecosystem dominance is ιt = ι∗oe
−

∫ t
0 gsds.
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Figure 3: Impact of An Acquisition Ban on Model Steady State
Note: The x-axis plots ecosystem dominance, and the y-axis plots the growth rate. The blue curve plots

the combinations of (ι, g) such that ι̇ = 0, and the red curve plots the combination of (ι, g) such that the

free-entry condition holds. Panel (a) sets the acquisition meeting rate to be µ = 0.03 and panel (b) sets

µ = 0. The arrows point in the direction of convergence towards the new balanced growth path. Other

parameters are set as: ρ = 0.02, γ = 4, β = 0.5, σ = 4, κ = 10.

Startups’ option value of acquisition becomes zero due to the policy (eq. 14). A

startup’s value vSt then comes only from operating profits πs(ιt). The growth rate on

the transition path thus equates the entry cost to the operating value, for any t:

(ρ+ gt)κ = πs

(
ι∗oe
−

∫ t
0 gsds

)
. (18)

Lemma 2 (Acquisition Ban: Transition Path). Assume κ(g) = κ and constant markups.

On the transition path from a BGP with µ > 0 towards a BGP with no acquisitions (µ = 0):

g0 < g∗o and dgt
dt > 0, where g0 is the time 0 growth rate on the transition path and g∗o is the

old BGP growth rate with acquisitions.

The proof is in Appendix B.3. Lemma 2 provides two results about the transition

path of the growth rate after an acquisition ban. First, growth immediately falls com-

pared to the old steady state when the ban is implemented (g0 < g∗o). This is intuitive:

ecosystem dominance (and thus startup profits) are unchanged but the option value

of acquisition is gone. Second, the growth rate is increasing over the transition to the

new steady state. This is also intuitive, since startup profits increase as the platform’s

ecosystem dominance declines over time, creating stronger incentives to enter.

Figure 3 depicts the intuition graphically: from the initial steady state with acqui-
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sitions in panel 3a, the acquisition ban equilibrium (panel 3b) differs in two ways.

First, the free entry curve immediately shifts down due to the lost option value of

acquisition. The initial growth rate on the transition path g0 is the intersection of ι∗o
and the new free entry curve, so below g∗o . Then the economy moves along the free

entry curve with growth increasing from g0 towards the new steady state, which is the

intersection of the new free entry curve and the new constant ecosystem dominance

curve (any g is consistent with constant ecosystem dominance when µ is 0 so this line

is vertical). Figure 4 plots the time paths of the growth rate and ecosystem dominance.

Notice that in this example, the acquisition ban increases the growth rate in the long

run. Lemma 3 derives a condition for this to be the case.

Lemma 3 (Acquisition Ban in the Long Run). Assume κ(g) = κ and constant markups.

If the equilibrium with acquisitions has interior tying, an acquisition ban increases the BGP

growth rate if and only if

β

(
π∗p,o

κ(ρ+ g∗o)
− 1

)
︸ ︷︷ ︸

M &A Premium

<
1

µκ

(
1

σ
− π∗s,o

)
︸ ︷︷ ︸
Wedge in Profits

.

The proof is in Appendix B.4. Lemma 3 links the effect of an acquisition ban on

the long run growth rate to several objects, potentially measurable in the data.20 The

first is the “M&A Premium” which is the value paid by the platform to acquire the

startup over and above the pre-acquisition value of the startup.21 The premium is

given by the total surplus created from the difference in profitability of the platform

and startups times the entrant bargaining power β which governs the share of surplus

going to the target.22 All else equal, if the premium is low, an acquisition ban is more

likely to increase growth because the option value of acquisition is not a major motive

for entry in the initial equilibrium.

20The challenge with measuring these objects in the data is the lack of pre-acquisition valuations and

other financial information for target firms, since only six out of the hundreds of targets in our sample were

public at the time of acquisition. The calibration uses indirect inference to estimate the parameters and

checks whether the condition holds.
21Table A.1 reports the premium for deals where the target was public prior to acquisition. Platforms’

average premium was 83%, higher than the 46% average of other large firms, but this is based on only six

deals: Google’s acquisitions of Fitbit (143%), Motorola (84%), Global IP Solutions (26%), On2 Technologies

(95%); Apple’s acquisition of AuthenTec Inc (85%); Amazon’s acquisition of Whole Foods Market (45%).
22Kamepalli, Rajan, and Zingales (2020) argue that startup bargaining power against platforms in acqui-

sitions may be low relative to traditional industries because of the threat of exclusion from the platform.
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Figure 4: Transition Path After An Acquisition Ban
Note: The x-axis plots time, and the y-axis plots the ecosystem dominance (panel a) and the growth rate

(panel b) on the transition path towards a balanced growth path (BGP) without acquisitions. The dashed

lines indicate the old BGP values of the variables. The same set of parameters as in Figure 3 are used.

The other case where this condition is likely to hold is when the platform technol-

ogy γ is very good. When γ is high, the wedge between startups’ standalone profits

π∗s,o and the usual profit margin 1
σ is larger through two channels. The first is a direct

effect: equation (8) shows that for given ecosystem dominance and tying, startup prof-

its are lower when γ is higher. Second, the platform strategically chooses higher tying

when γ is high (Figure 1a.) Taken together, this means that the change in startups’

profits due to an acquisition ban will be larger when γ is higher.

5 Welfare

Turning to normative implications, we first decompose welfare in this economy on

any balanced growth path into terms that have natural interpretations. Then we solve

for the efficient allocation to highlight various distortions in the competitive equilib-

rium. The final part of this section returns to the question of an acquisition ban.

5.1 Welfare Decomposition on A Balanced Growth Path

The model lends itself to a linear decomposition of the household’s welfare on a bal-

anced growth path. We start by introducing an alternative price index that isolates the
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role of the platform. Given platform time use LP , tying δ, and ecosystem dominance

ι, we define this utilization index as:

P u ≡ (1 + γLP (ι+ (1− ι)(1− δ)))
1

1−σ .

P u is the price index for the household if there is a unit mass of varieties and all firms

charge their marginal cost of production. It captures the pure effect of platform use.

Secondly, we define a measure of aggregate labor productivity in this economy:

Z ≡

(
ι p1−σP (1 + γLP ) + (1− ι) p1−σS (1 + γLP (1− δ))

)− σ
1−σ

ι p−σP (1 + γLP ) + (1− ι) p−σS (1 + γLP (1− δ))
, (19)

where pS is the price charged by the startups and pP is the price charged by the

platform. With this definition, Ct = ZLYN
1

σ−1

t . Thus Z measures how much ad-

ditional real consumption can be created when production labor increases. In the

baseline model, the markups are the same for platform goods and startups and labor

productivity equals the inverse of the utilization index: Z = 1/P u.

The discounted utility W of the household on a balanced growth path can then be

decomposed into six components,

W =
g

ρ2(σ − 1)︸ ︷︷ ︸
Growth

+
1

ρ

− logP u︸ ︷︷ ︸
Utilization

− log
P

P u︸ ︷︷ ︸
Markup

− 1

PZ︸︷︷︸
Production Cost

− κ(g)g︸ ︷︷ ︸
Entry Cost

− LP︸︷︷︸
Utilization Cost

 .

(20)

The first term captures the effect of growth in terms of new varieties. The rest of

the terms capture the welfare effects of static allocations. The first static component is

the utilization of the platform service assuming firms do not charge any markup. The

second term captures the consumption impact of the average markup, measured as

the gap between the equilibrium price index and the utilization index. The final static

welfare components are the labor costs associated with different activities.23

23In the decomposition of welfare changes between BGPs in the quantitative analysis we call the contri-

bution of “Growth” the change in the growth term net of changes in entry costs, “Platform” the change in

the utilization term net of changes in platform time use (utilization costs), and “Markup” the change in the

markup term net of changes in production costs.
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5.2 Efficient Allocation

The planner maximizes the discounted utility of the household, subject to the resource

constraints:

WSP = max
cit,Lt,Ṅt

∫ ∞
0

e−ρt [logCt − Lt] dt, (21)

s.t.

Equation (2), (16), (17),

with ι0 given. To characterize the planner’s solution, we first simplify her constraints.

To the planner, the tying decision is irrelevant because it is always beneficial to fully

share the platform technology across all products. Thus δt = 0. Since all products

then have the same quality, the planner chooses equal consumption of all products.

The resulting labor productivity is Zt = (1 + γLP,t)
1

σ−1 and aggregate consumption is

Ct = ZtLY,tN
1

σ−1

t . With these simplifications, the planner’s value can be written

ρWSP (N) = max
LP ,LY ,Ṅ

log ((1 + γLP )N)
1

σ−1 LY−

(
LP + LY + κ

(
Ṅ

N

)
Ṅ

N

)
+ṄWSP ′(N).

In her optimal allocation, the social planner equalizes the societal value of additional

production labor to the household’s disutility of working. Thus, LSPY = 1. Similar

logic implies that the optimal platform time use is

LSPP =
1

σ − 1
− 1

γ
. (22)

We show in Appendix B.6 that the optimal growth rate gSP is summarized by the

following differential equation:

ρ
(
κ′
(
gSP

)
gSP + κ

(
gSP

))
=

1

σ − 1
+
(
κ′′
(
gSP

)
gSP + κ′

(
gSP

))
ġSP . (23)

Distortions. Comparing platform time use in equations (12) and (22), it is clear that

tying results in under-utilization of the platform by households in the competitive

equilibrium. Tying not only affects the static allocation but also impacts the growth

rate; contrasting the free entry condition (15) to the planner’s optimality condition

for the growth rate (23) reveals that in the efficient allocation the platform’s service is
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growth-neutral, whereas in the competitive equilibrium tying lowers startup profits

(πs(ι) < 1
σ−1 ) and distorts the entry rate.24

The other distortions to the growth rate are standard in this class of models. First,

the planner and the entering firms face different effective discount rates. The plan-

ner’s discount rate aligns with the household, ρ; the entering firms’ discount rate is

ρ + g because a higher growth rate leads to a faster reduction in individual firms’

profits. Second, the social return of an additional firm is 1
σ−1 >

1
σ because knowledge

spillovers lower entry costs for future startups. Third, there is a congestion externality

on current period entry when η > 0 (Klenow and Li 2025). There is a final standard

static distortion that markups depress production labor: LY = σ−1
σ < 1.

5.3 Welfare Effects of An Acquisition Ban

The (possible) growth benefit of an acquisition ban occurs in the long run while the

costs are incurred in the short run. We again highlight this tradeoff by considering the

welfare effect of an acquisition ban under constant markups and constant entry costs.

Lemma 4. Assume constant markups and κ(g) = κ. If the equilibrium with acquisitions

has interior tying, the discounted welfare impact of an acquisition ban is the discounted gap

between growth rate paths:

∆W =

(
1

σ − 1
− ρκ

)∫ ∞
0

e−ρt(gt − g∗o)dt. (24)

The proof is in Appendix B.7. With constant markups, there is no change in the

markup component of (20) due to the ban. The platform component P u is also un-

changed because the ban results in lower ecosystem dominance but this causes lower

tying (equation (11)) that exactly offsets the change in ecosystem dominance. The de-

cision about whether or not to ban acquisitions can therefore be taken in two steps:

first evaluate whether a ban increases the long run growth rate. If not, the policy is

unambiguously bad. If it is, then the policymaker must trade off the cost of initially

lower growth against higher long run growth using the appropriate household dis-

count rate ρ. The calibration is such that the pre-platform growth rate is positive; this

requires 1
σ > ρκ. This implies that 1

(σ−1) − ρκ > 0. Thus, an acquisition ban increases

24If β = 1 and µ → ∞ in the competitive equilibrium, the platform service becomes growth-neutral be-

cause startups are acquired immediately and capture the full surplus created by the acquisition, equalizing

the platform and startup firm values.
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welfare if and only if the discounted growth rate in the transition is larger than the

discounted growth rate on the old BGP.

6 Quantitative Model

This section extends the model to include variable markups to bring the quantitative

model closer to the data. We then calibrate this extended model, explore the short

and long run effects of competition policy (both acquisition and tying regulation),

and discuss the sensitivity of the policy conclusions to parameter choices.

6.1 Variable Markups

The baseline model assumed that the platform ignored its effect on the aggregate price

index when choosing prices for its products. Relaxing this assumption yields a sym-

metric problem for the platform across all of its products:

max
pP ,δ∈[0,1]

πP = (pP − 1) (1 + LPγ)
(pP
P

)−σ
P−1 (25)

s.t. LP =

(
1

σ − 1
− 1

γ

ιp1−σP + (1− ι)p1−σS

ιp1−σP + (1− ι) (1− δ) p1−σS

)
and P = N

1
1−σ

(
ι(1 + LPγ)p1−σP + (1− ι)(1 + LPγ (1− δ))p1−σS

) 1
1−σ .

Note that LP is decreasing in the platform’s price. Appendix B.8 derives the first

order conditions of the problem. The solution for the price is

pP =
σ − (σ − 1)s̃P

(σ − 1)(1− s̃P )
where s̃P = sP

(
1−

∂LP
∂pP
∂LP
∂δ

)
.

This is the standard solution where the markup increases in the market share, ex-

cept that the relevant market share s̃P is less than the actual market share sP because
∂LP
∂pP

and ∂LP
∂δ are negative. This downward adjustment to the markup due to en-

dogenous platform use is small in the calibrated model, especially for low levels of

ecosystem dominance (Figure 5a). When the platform can adjust prices as well as ty-

ing, desired tying is lower for the same level of ecosystem dominance, though for low

values of ι this difference is also small (Figure 5b).
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Figure 5: Platform’s Markup and Tying
Note: Panel (a) compares the standard pricing solution with CES demand and granular market shares

(Atkeson and Burstein 2008) to the platform’s markup in our model with endogenous platform time use.

The dashed line is the startups’ markup. Panel (b) compares platform tying in the version of the model

with constant markups to platform tying with variable markups. Parameters in Table 2.

6.2 Calibration

The calibration proceeds in several steps. First, standard values for household pref-

erences are taken from the literature, with ρ = 0.02 (for an annual real interest rate

of 2%) and σ = 4 (this implies firm-level markups for startups of 33%, in line with

the estimates of De Loecker, Eeckhout, and Unger (2020) and De Ridder, Grassi, and

Morzenti (2024) and the love-of-variety estimate in Baqaee et al. (2025)). We set the

target’s (startup’s) bargaining power β = 0.5 as estimated by David (2020) but ex-

plore sensitivity of the results to this choice since the option value of acquisition is a

key force in the model. Finally, we follow Acemoglu et al. (2018) in setting η = 1.

Second, we compute a “pre-platform” steady state of the model to calibrate the

entry cost κ. In this steady state γ = 0 so that there is no technological benefit of the

platform. Growth in this steady state is driven purely by the balance between startup

profits and entry costs. We pick κ to match an annual growth rate of 2%, roughly the

average annual growth rate in the U.S. prior to the advent of digital platforms.

Third, we compute a ”platform” steady state to calibrate the platform technology

parameter γ. The model measure of time spent on the platform isLP . We take the data

analog of this moment to be time spent online from Nielsen’s (2021) by U.S. house-

holds. U.S. households spent 3.8 hours per day online across computers, smartphones
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Value Meaning Source/Target

Panel A: Calibrated from Literature

ρ 0.02 Discount rate (annual) Standard

σ 4 Elasticity of substitution De Loecker et al. (2020)

η 1 Entry cost, curvature Acemoglu et al. (2018)

β 0.5 Entrant bargaining power David (2020)

Panel B: Calibrated from Data

κ 52 Entry cost, constant Growth rate

γ 6.98 Platform technology Platform time use

µ 0.0061 Merger meeting rate Platform revenue share

Table 2: Model parameters, baseline.

and tablets in 2021. Given the uncertainty around how much of this time is spent en-

gaging in the sort of activities our model captures, as well as γ’s role in governing

the response of startup profits to an acquisition ban, we explore the sensitivity of our

results to this choice.

The final parameter is the acquisition meeting rate µ. We choose µ to match

the revenue share of the platform in the platform steady state. The data target is
total GAFAM revenues in Compustat

total U.S. non-farm, non-financial revenues = 11%. The calibrated value of µ implies

a steady state ecosystem dominance of 9.33 %, that is, the platform supplies roughly

1 out of 10 products in the economy. Tying causes the platform to capture a slightly

larger share of total revenue (11%) than its share of products. Table 2 summarizes the

calibrated parameters.

Table 3 demonstrates the model fit of the data for the pre-platform and platform

economies. The model is capable of matching platform time use and the platform’s

revenue share exactly. The parameter choices imply tying of 44%, meaning 56% of

the platform’s appeal is shared with third party sellers. The middle panel reports the

steady state welfare gain (1.5%) associated with the introduction of the platform into

the economy. Households generate significant real consumption benefits by using

the platform. These benefits are large enough to outweigh the slight decline in the

growth rate due to tying and a slight increase in the markup distortion. The bottom

panel reports the discounted welfare gains from the point of view of the pre-platform

equilibrium over the transition to the platform steady state, which are 1.6%. The bene-
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Data Pre-platform Platform

Panel A: Model Fit for Targeted Moments

Growth rate, % 2.000 2.003 1.999

Platform time use, hours/day 3.8 0 3.8

Platform revenue share, % 11 0 11

Tying δ, % - 0 44

Panel B: Steady State Welfare Comparison

BGP Welfare, CE % chg. - - 1.5

Growth - - -0.2

Platform - - 1.7

Markup - - -0.1

Panel C: Welfare Over the Transition

Transitional Welfare, CE % chg. - - 1.6

Table 3: Top panel: Model fit for targeted moments given the parameterization in Table 2. Mid-

dle panel compares steady state welfare between the pre-platform steady state and the platform

steady state. Bottom panel shows the discounted welfare over the transition from the pre-platform

steady state to the platform steady state. CE = consumption equivalent. See section 5.1 for more

details on welfare components.

fits of platform use occur immediately while the costs from higher markups and tying

take time to kick in as ecosystem dominance builds up over time.

6.3 Policy Experiments

Table 4 summarizes the results of two policy experiments: an acquisition ban and a

tying ban. These experiments are conducted starting from the platform steady state.

Acquisition Ban. An acquisition ban restores the higher growth and lower markups

of the pre-platform equilibrium by reducing ecosystem dominance to zero, thereby re-

ducing tying, without changing platform utilization much.25 But these welfare gains

are so small that the discounted welfare effect over the transition is near zero; the

25Recall that tying does not converge to zero as ecosystem dominance converges to zero.
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Base. Acq. Ban Tying Ban First Best

Panel A: Model Fit for Targeted Moments

Growth rate, % 1.999 2.003 2.010 5.349

Platform time use, hours/day 3.8 3.8 7.6 7.6

Platform revenue share, % 11 0 9 4

Tying δ, % 44 40 0 0

Panel B: Steady State Welfare Comparison

BGP Welfare, CE % chg. - 0.18 7.79 63.72

Growth - 0.15 0.37 52.47

Platform - -0.04 7.41 7.41

Markup - 0.07 0.01 3.84

Panel C: Welfare Over the Transition

Transitional Welfare, CE % chg. - 0.08 7.79 63.54

Table 4: Features of model steady state with no policy interventions (”Base.”), a policy blocking

nearly all acquisitions (µ ≈ 0), or a policy banning tying (δ = 0), compared to the first best. CE =

consumption equivalent. See section 5.1 for more details on welfare components.

consumption equivalent welfare gain is 0.08%.26 The sensitivity analysis in the next

section reveals that small and reasonable parameter changes can turn the predicted

welfare effects of an acquisition ban negative.

Tying Ban. By contrast, a tying ban provides potentially large and immediate wel-

fare benefits. It eliminates differences in profits for the platform and standalone firms,

which increases the long run growth rate even more than an acquisition ban. The

bulk of the gains, however, come from eliminating platform under-utilization. Us-

ing the platform now generates higher quality across all products in the economy

equally. Households devote twice as much time to using the platform, resulting in

substantially higher utility from consumption each period. The markup gains, which

are smaller than in the acquisition ban case because the platform maintains a non-

negligible market share, occur because the faster growth rate of new firms erodes the

platform’s market share compared to the baseline economy.

26The difference between welfare over the transition and steady state welfare highlights the importance

of the discount rate in assessing the effects of the policies (Caplin and Leahy 2004; Cropper et al. 2014).
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It’s not exactly clear how to detect and regulate tying in practice, and this is per-

haps why regulators have mostly focused on acquisitions. However, Waldfogel (2024)

finds that Europe’s Digital Markets Act, which prohibited self-preferencing in search,

reduced Amazon’s self-preferencing from 30 ranks to 20; not a complete elimination

of tying, but demonstrating that this sort of regulation affects platform behavior.

6.4 Sensitivity Analysis for Acquisition Ban Results

Finally, Lemma 3 showed that the long-run growth effects of an acquisition ban de-

pend on the relative strength of changes in the option value of acquisition and the elas-

ticity of startup profits to changes in ecosystem dominance. Intuitively, the entrant’s

bargaining power β determines the size of the option value of the acquisition, and the

platform technology parameter γ controls how startup profits respond to ecosystem

dominance, so we explore the sensitivity of the results to these two parameters.

Startup Bargaining Power. This exercise varies startup bargaining power β be-

tween 0 and 1 with all other parameters held at their baseline values from Table 2 and

computes a new competitive equilibrium for each value of β. The top left panel of

Figure 6 shows the merger premium (defined in Lemma 3) in the associated steady

state and the top right panel shows the discounted welfare change over the transition

from that steady state to an acquisition ban equilibrium.

Consistent with Lemma 3, the welfare effects of an acquisition ban are larger when

the merger premium is low, and turn negative if the premium is sufficiently high,

around β = 0.65. This is because the option value of acquisition provides a significant

entry motive in the pre-ban steady state for high values of startup bargaining power.

Note that for all possible values of β the merger premium in the calibrated model is

low, at most 20% when startups capture the entire merger surplus, compared to the

47% average premium found by David (2020), who includes all acquisitions of public

firms, and our Table A.1 that focuses on the largest acquirers and finds premiums

between 45-83% depending on the acquirer type.27 This suggests that we may be

understating the costs of an acquisition ban and thus our baseline results should be

interpreted with caution.

27The 83% is for platform-based firms but is based on only six observations.
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Figure 6: Welfare Effects of An Acquisition Ban Under Alternative Calibrations
Note: Sensitivity analysis of the welfare effects of an acquisition ban to changes in the startup bargaining

power β (top panel) and the platform technology γ (bottom panel). The vertical dashed lines indicate the

baseline calibrated value of each parameter. Other parameter values in Table 2.
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Platform Technology. Alternative targets for platform time use LP imply differ-

ent values of the platform technology parameter γ. Varying γ affects the platform’s

revenue share, so for each value of γ, µ is re-calibrated to match the platform revenue

share of 11%. The results are in the bottom panel of Figure 6. When γ is low an ac-

quisition ban lowers welfare because there is not a strong response of startup profits

to the ban. For example, a value of platform time use of 8 minutes per day consistent

with survey evidence about online shopping time only (SWNS 2024), implies γ = 3.25

(compared to the baseline value 6.98) and the welfare loss from an acquisition ban is

0.12%.28 As with entrant bargaining power, reasonable changes to the time use target

reverse the policy prescription of the model.

7 Model Extensions

This final section extends the baseline model in two ways. In the first, the platform

sells its appeal as a service to startups. The platform’s markup on its service creates

a similar wedge between platform and startup profits as tying. The second extension

adds productivity shocks and operating costs to the baseline model, creating a motive

for exit. Tying generates a wedge between the exit threshold of platform products and

startups, meaning that platform products have lower productivity on average.

7.1 Revenue Sharing

This extension introduces a market for the platform’s appeal, conceptualizing it as

a service that can be sold to startups (e.g. sponsored products in search). Instead

of choosing tying, the platform indirectly affects the startups’ utilization ui of the

platform by choosing a price for its services. The quality of a product is now given by

αi = 1 + γLPu
ε
i ,

where ε ∈ (0, 1) is the utilization elasticity that can be interpreted either as (i) a tech-

nology parameter governing the diminishing returns to using the platform service or

(ii) a competition parameter between different platforms in the market for providing

28This is in spite of the fact that the merger premium rises with γ (see Appendix Figure C.3), which

pushes in the opposite direction in terms of welfare through its effect on the option value of acquisition.
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platform services.29 When ε < 1, there is a downward-sloping demand curve for the

platform’s service. The platform’s marginal cost of providing a unit of service is ψ.

The profit-maximizing utilization for a startup is given by

max
u

1

σ

1 + γLPu
ε

1 + γLP
(
ιuεP + (1− ι)uεS

) − qu.
Note that an individual startup takes other startups’ utilization, which determines

the price index in the denominator, as given. Solving this problem and imposing

symmetry (u = uS) implies an inverse demand curve for the platform’s service

q =
1

σ

εγLPu
ε−1
S

1 + γLP
(
ιuεP + (1− ι)uεS

) . (26)

Fixed Platform Time Use. We first solve the platform’s optimization problem re-

garding its service fee q and self-utilization uP taking as given LP to highlight the

central mechanism:

max
uP ,q

ιπP + (1− ι)quS − (ιuP + (1− ι)uS)ψ,

where the first term is the platform’s profits from goods sold, the second term is ser-

vice fees from startups, and the last term is the total cost of providing platform ser-

vices to itself and to startups. From equation (26), choosing the price q is equivalent

to choosing the startups’ utilization so the problem can be rewritten as

max
uS ,uP

ιπP + (1− ι) ε
σ

γLPu
ε
S

1 + γLP
(
ιuεP + (1− ι)uεS

) − (ιuP + (1− ι)uS)ψ. (27)

The platform captures ε
σ share of the startups’ revenue generated through their

utilization of the platform service by collecting service fees.

Lemma 5. Under the platform’s optimal choices for utilization:

uS
uP

=

(
ε− ν
1− ν

) 1
1−ε

< 1,

where

ν =
ιuP

ε + ε(1− ι)uεS
1 + γLP

(
ιuP ε + (1− ι)uεS

) < ε.

29The utilization elasticity can be micro-founded by a model where multiple platforms offer imperfectly

substitutable services and the services from different providers are aggregated via a Cobb-Douglas aggre-

gator (see Appendix B.9 for details). In this interpretation, ε decreases in the number of platforms.
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Figure 7: Startup Profits and Platform Utilization: Revenue Sharing Model
Note: Utilization and startup profits as a function of the platform’s ecosystem dominance in the revenue

sharing model. Model parameters are the same as in Table 2, plus ε = 0.1 and ψ = 0.05.

The proof is in Appendix B.10. Under the optimal utilization choice, uS < uP , gen-

erating a wedge between platform and startup profits like tying does in the baseline

model. There are two sources of under-utilization of the platform service by startups.

First, because of its market power in the platform service market, the platform charges

a markup. Second, because of the platform’s dual role as a seller in the goods market,

it charges an even higher markup than the standard one to increase revenue differ-

ences. To see this, note that the ratio of startup to platform utilization is less than ε,

the under-utilization predicted by a standard monopoly model.

Endogenous Platform Time Use. What matters for the effect of acquisitions on

growth is how startup profits change with the platform’s ecosystem dominance. This

requires numerical solution of the platform problem, where, as in the baseline model,

we allow the platform to consider its effect on households’ platform time useLP when

choosing utilization. Further details are in Appendix B.11.

Startup profits initially decline in ecosystem dominance so that greater ecosys-

tem dominance discourages entry of new firms like in the baseline model (Figure 7a).

However, the revenue sharing model has a second effect that as ecosystem dominance

grows, the platform reduces its own per-product utilization uP because of growing

total costs (Figure 7b). Because the platform always chooses lower utilization for star-

tups, this pushes total utilization by firms down as ecosystem dominance grows, caus-

34



ing households to eventually reduce their time on the platform to zero (Figure B.2a).

As that happens, startup profits return to 1
σ as in the competitive equilibrium with

no platform, hence the eventual rise in profits in Figure 7a. Because ecosystem dom-

inance in the data should be less than the platforms’ revenue share of 11%, it seems

plausible that startup profits are decreasing in ι over the empirically relevant range.

7.2 Heterogeneous Firms and Exit

The final extension introduces idiosyncratic productivity dynamics at the product

level to the baseline model to study exit dynamics and quality-based theories of harm

for platform acquisitions: OECD (2023) suggests that a platform’s ecosystem dom-

inance may make low-quality platform products hard for entrants to displace. To

formalize this intuition, we build on the theoretical framework of Luttmer (2007).

Stochastic Productivity. New entrants are born with labor productivity of 1. Pro-

ductivity then fluctuates according to a geometric Brownian motion with volatility ν.

We denote the log productivity of product i at time t as ait. Let At denote the average

productivity of all goods at time t.

Entry and Operating Costs. To ensure balanced growth, the entry cost κ(gt) now

scales inAtNt. To generate exit dynamics we assume operating a product line (whether

as the platform or as a startup) incurs an operating cost of ψ
AtNt

.

Acquisitions. Search is undirected.30 As before, meetings between startups and

the platform occur at rate µ and the startups’ share of the surplus is β. Acquired

products follow the same productivity process as startups.

Ecosystem Dominance with Heterogeneous Firms. With heterogeneous pro-

ductivity ecosystem dominance becomes

ιt =
APt
At

NPt

Nt
, (28)

30In Appendix A.3 we provide evidence in favor of the assumption of random search by showing that

Big Tech targets do not seem positively selected at acquisition compared to other targets in the SDC or to

all other patenting firms by using patent citations as a measure of target quality.
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where APt is the average productivity of platform goods. Ecosystem dominance now

comes either from supplying a large share of products as before or from having higher

average productivity for a given share of products.

Pricing Equilibrium with Heterogeneous Firms. For tractability we assume

constant markups so that pit = σ
σ−1e

ait/(1−σ) for all goods. This yields a price index

similar to equation (6). The only difference is the presence of average productivity

Pt =
σ

σ − 1︸ ︷︷ ︸
markup

×

 AtNt︸ ︷︷ ︸
agg. productivity

×
(

1 + γLP,t(ιt + (1− ιt)(1− δt))
)

︸ ︷︷ ︸
platform


1

1−σ

.

Platform Use and Tying. The solutions for platform use and tying are identical

to those for the baseline model (equations (10) and (11)), substituting in the modified

definition of ecosystem dominance (28).

Firm Values. Let vS(a) denote the value of a startup and vP (a) the value of a

platform-owned product as functions of productivity a on a balanced growth path

with growth rate g. Conditional on operating, the platform product’s value evolves

according to the Bellman equation

(ρ+ g)vP (a) = eaπP − ψ +
ν2

2
v′′P (a). (29)

The flow payoff of an operating platform-owned firm is proportional to its productiv-

ity a, where the proportion is the per-unit profit πP . The last term in (29) reflects the

fact that productivity changes over time following the Brownian motion.

Similarly, a startup has the Bellman equation

(ρ+ g)vS(a) = eaπS − ψ + µβ(vP (a)− vS(a)) +
ν2

2
v′′S(a), (30)

where startups additionally have a flow benefit from the option value of acquisition.

Exit Dynamics. All firms have the option to exit the market. In the platform’s case

this means shutting down an unprofitable product line without shutting down the

platform itself. The platform’s exit decision is characterized by an exit threshold aP .
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The exit threshold should deliver the same value as exiting, which leads to the value-

matching condition vP (aP ) = 0. The exit threshold should also be optimally chosen,

which leads to the smooth-pasting condition v′P (aP ) = 0. Similar value matching and

smooth pasting conditions for the startups deliver the startup exit threshold aS .

Lemma 6 (Exit Threshold). On a balanced growth path, the exit thresholds are solutions to

the following equations

eaP =

(
1− 1

ηP

)
ψ

πP
,

and

1 + ηS
1 + ηP

+ eaP−aS
1

ηP

(
ηS − ηP
1 + ηP

e−ηP (aS−aP ) − ηS
)

=
ηP − 1

ηS − 1

(
1− πS

πP

)
,

where ηP =
(
ρ+g
ν2/2

)1/2
and ηS =

(
ρ+g+µβ
ν2/2

)1/2
.

Corollary 1 (Negative Selection). On a balanced growth path, aS > aP .

Corollary 1 demonstrates the negative selection induced by ecosystem dominance:

the platform will keep lower productivity product lines active compared to startups.

A startup has lower profits because of tying. To justify continuing to operate, startups

must have higher productivity. More startups exit the market, and, conditional on

surviving, the startups tend to have a higher productivity than the platform-owned

firms. Both are consistent with quality-based theories of harm suggesting ecosystem

dominance and network effects allow low quality platform products to survive. Fur-

ther discussion of this extension and the proof of Lemma 6 are in Appendix B.12.

8 Conclusion

Platforms intermediate a rapidly growing share of total consumption and have dual

roles as intermediaries and producers. Platform-based firms have acquired startups

in a wide range of industries in recent years, often as a way to expand their product

offerings and “digital ecosystems.” Regulators show a keen interest in understanding

the effects of platform-based firms’ acquisitions on growth, but economic theory and

evidence have lagged behind.

This paper aims to fill that gap. First, contrary to popular belief, a large share of

platform acquisitions are cross-industry, motivating us to move beyond “killer acqui-

sitions.” Cross-industry acquisitions by platforms have competing effects on new en-

trants’ incentives. As commonly noted in Silicon Valley, the chance of being acquired
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is itself a strong motive for entry. At the same time, acquisitions expand a platform’s

presence into new markets and make it less costly for the platform to reduce demand

for third party sellers’ products in favor of its own. Regulations targeted at these other

activities likely matter much more for welfare than stricter acquisition policy. One in-

teresting direction for future research is to consider how competition policy affects the

incentives of platform firms to improve their platform technologies themselves, since

digital platforms require significant investment to develop.
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A Data Appendix

A.1 Data Sources

The SDC Platinum data is described in the main text. The sources for other data series

mentioned in the text are:

1. Industry specific GDP Bureau of Economic Analysis, Annual Value added by

Industry as a Percentage of Gross Domestic Product, Tables TVA110-A for the

years 2017 onwards and TVA106-A for the preceding years.

2. Retail Sales U.S. Census Bureau, Retail Sales: Retail Trade [MRTSSM44000USS]

retrieved from FRED, Federal Reserve Bank of St. Louis.

3. Final Consumption Expenditure Organization for Economic Co-operation and

Development, Private Final Consumption Expenditure in United States [US-

APFCEQDSNAQ], retrieved from FRED.

4. E-commerce Retail Sales U.S. Census Bureau, E-Commerce Retail Sales as a Per-

cent of Total Sales [ECOMPCTSA] retrieved from FRED.

5. GAFAM revenue Total Revenues (Compustat code: revt) as reported in the com-

panies’ annual income statement of 2021.

6. Total U.S. non-farm, non-financial revenue Annual flow of funds tables on

FRED St. Louis (code: BOGZ1FA106030005A. Definition: Nonfinancial Corpo-

rate Business; Revenue from Sales of Goods and Services, Excluding Indirect

Sales Taxes (FSIs), Transactions).

A.2 Summary Statistics for Acquisitions

Summary statistics for platform acquisitions are in Table A.1. The GAFAM group

did 133 acquisitions per firm from 2010-2020, more than the other three groups of

large acquirers, giving us 665 total deals for this group.31 In terms of cross-industry

acquisitions, they were more likely to acquire firms in other industries (the granu-

larity of the industry classifications in the SDC are roughly equivalent to NAICS3

categories). They also paid a significantly higher acquisition premium, defined as(
deal price

pre-acq. price − 1

)
× 100, though coverage of this variable is only available for six

publicly listed targets. GAFAM firms were more likely to acquire young firms, even

31Only 467 of these have non-missing entries for all three industry codes for the targets.
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GAFAM Top 25 HT Top 25 PE Top 25 S&P

Deal Characteristics

Deals per firm 133.5 82.1 115.9 84.0

Cross-industry Share, SDC def. % 68.7 59.4 48.9 49.4

M&A Premium, % 83.1 45.1 45.7 47.4

Target Characteristics

Age 7.9 13.3 17.6 13.8

Age - Ind Avg. Age -4.6 0.0 6.5 3.1

Employees 4582 9020 1978 376

Emp.-Ind Avg. Emp. 879.7 1380.9 1928.4 305.3

Emp./Total Ind. Emp 2.1 1.0 0.2 0.2

Patents 20.6 18.0 5.2 4.8

Patents/Ind. Avg. Avg. Patents 25.3 16.0 2.8 0.9

Share No Patents 61.6 69.6 83.2 82.7

EBITDA < 0 LTM, % 38.2 22.1 19.6 22.1

Pre-Tax Inc. < 0 LTM, % 50.0 41.5 28.0 30.1

Table A.1: Source: SDC Platinum, 2010-2020, restricting attention to SDC-classified high tech tar-

gets. “GAFAM” is Google, Apple, Facebook, Amazon, and Microsoft. The three other groups

are constructed following Jin, Leccese, and Wagman (2023a): the largest non-GAFAM acquirers

labelled as high-tech by Forbes’ ranking of Top 100 Digital Companies (“Top 25 Hi-Tech”), the

largest private equity firms by Private Equity International (“Top 25 PE”) and the other largest 25

firms by number of acquisitions in the S&P database (“Top 25 S&P”). “LTM” = last twelve months.

controlling for average firm age in the same industry. Targets of GAFAM had more

patents relative to targets of other acquirers as well as relative to other firms in their

industry. On the other hand they were less likely to have positive earnings before

interest, taxes, depreciation, and amortization (EBITDA) or pre-tax income in the 12

months prior to acquisition than targets of other firms, and, as we show in Section

A.3, these patents did not receive more citations than comparable patenting firms or

non-GAFAM targets.
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A.3 Evidence for Random Search in Heterogeneous Firms Model

One concern is that acquirers, particularly platforms where startups already sell their

products, may not meet startups at random for an acquisition. If platforms tend to

acquire only high quality startups it could change the predictions of the model. To

investigate this in the data, we focus on the GAFAM targets with at least one patent

prior to acquisition and use patent citations to measure a target firm’s quality relative

to otherwise similar firms to check for selection on quality at acquisition.32 This gives

us 119 platform targets. For each of these firms we build two control groups:

1. Other targets in the SDC Platinum database (yields 204 control firms on average)

with the same:

• NAICS6 industry code

• Year of first patent (±5 years).

• Year of acquisition or later.

2. Other patenting firms in the USPTO PatentsView data (yields 909 control firms

on average) with:

• Cosine similarity θij > 0.9 of CPC codes, computed as

θij =
FiF

′
j

(FiF ′i )
1
2 (FjF ′j)

1
2

,

where Fi = {Fi,CPC1 , . . . , Fi,CPC132} is a vector capturing the distribution

of i’s patents across 132 CPC codes following Bloom, Schankerman, and

Van Reenen (2013). Each element Fi,CPCk =
ni,CPCk

ni
is the share of firm i’s

patents in CPC code k in the total number of CPC codes of firm i’s patents,

with ni =
∑132

k=1 ni,CPCk .

• Same year of first patent (±1 years)

We then compute, for each target firm i:

ξi ≡
{

5 year forward citations of GAFAM target i
avg. 5 year forward citations of control firms’ patents

}
,

including all patents granted to firm i and firm i’s control group prior to firm i’s

acquisition date.

32It is difficult to measure startup quality for startups without patents. Table A.1 shows that for possible

measures including EBITDA and net income, GAFAM targets are more likely than other targets to have

negative profits prior to acquisition, pointing to possible negative selection.
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If ξi > 1, this suggests firm i was higher quality than its control group in terms of

citations received to its patents at the time of acquisition. Using Control Group 1, only

36% of GAFAM targets have more citations than the average control firm (that is, ξi >

1). For Control Group 2 the share is 44%. The median ξi across all GAFAM targets is

0.49 using Control Group 1 and 0.78 using Control Group 2 meaning GAFAM targets

tend to receive fewer citations than comparable firms. However the means are 3.04

and 2.91, respectively, suggesting that there are a few very high quality targets in

the GAFAM group. Still we take this overall as evidence in favor of random search

by GAFAM in the M&A market and are reassured by the similarities of the findings

regardless of the control group (other patenting targets or all patenting firms).
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B Model Appendix

B.1 Derivation of Household’s Problem

We start with the expenditure minimization problem:

min

∫ Nt

0
pi,tci,tdi,

s.t.

Ct =

[∫ Nt

0
αi

1
σ
t c

σ−1
σ

it di

] σ
σ−1

.

The solution to this problem gives the standard CES demand curve

cit =
αitp

−σ
it

P−σt
Ct,

where

Pt =

(∫ Nt

0
αitp

1−σ
i,t di

) 1
1−σ

.

The following Bellman equation characterizes the household’s optimization problem:

ρWt(a) = max
Ct,Lt

logCt − Lt + ȧW ′t(a) + Ẇt(a),

where

ȧ = rta+ Πt + Lt − PtCt.

The first-order conditions for labor and consumption are:

1

Ct
= PtW

′
t(a)

1 = W ′t(a)

For both conditions to hold, it must be that PtCt = 1 for any t. These two conditions

also imply that W ′t(a) = 1 for any t and any a. Using this result, we can re-write the

Bellman equation as:

ρWt(a) = logCt(a)− Lt(a) + rta+ Πt + Lt(a)− PtCt(a).

Differentiating both sides of the equation with respect to a, we have

ρ = rt.
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B.2 Derivation of Firm Values

We derive the detrended firm values in this section. To start, we denote the value of

platform firms as VPt and the value of standalone firms (startups) as VSt. From the

definition of the detrended values, VPtNt = vPt and VStNt = vSt.

The equations that determine the firm values are:

rtVPt = πPt
1

Nt
+ V̇Pt

and

rtVSt = πSt
1

Nt
+ µβ (VPt − VSt) + V̇St.

With the chain rule, we can write

V̇PtNt + VPtṄt = v̇Pt

and

V̇StNt + VStṄt = v̇St.

Substituting the time derivatives, we have

rtVPt = πPt
1

Nt
+
v̇Pt − VPtṄt

Nt

and

rtVSt = πSt
1

Nt
+ βµ (VPt − VSt) +

v̇St − VStṄt

Nt
.

Multiplying both sides by Nt and using the definition for the detrended values, we

have

(rt + gt)VPt = πPt + v̇Pt

and

(rt + gt)VSt = πSt + βµ (vPt − vSt) + v̇St.

B.3 Proof of Lemma 2

Proof. Taking equation (18), we first want to prove that dgt
dt > 0. To do so, totally

differentiate both sides of the equation with respect to t:

dgt
dt
κ = −dπs

dι
ι∗o exp

(
−
∫ t

0
gτdτ

)
gt > 0,

where we used the result dπs
dι < 0. To prove the statement regarding g0, we note that

when t = 0, the free entry condition becomes:

(ρ+ g0)κ = πs(ι
∗
o) < πs(ι

∗
o) + µβ(v∗p,o − κ),

where the inequality uses the fact that in the old BGP, µβ(v∗p,o − κ) > 0.
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B.4 Proof of Lemma 3

Proof. To show the statement regarding g∗n and g∗o , we note that in the new BGP, ι∗n = 0.

Thus π∗s,n ≡ πs(ι∗n) = 1
σ . Suppose the condition in the lemma is true; we want to prove

that g∗n > g∗o by contradiction. Contrary to the statement, suppose g∗n ≤ g∗o . From the

free-entry condition in the old BGP:

(ρ+ g∗n)κ ≤ (ρ+ g∗o)κ = π∗s,o + βµ

(
π∗p,o
ρ+ g∗o

− κ
)
<

1

σ
,

where in the first inequality, we used the assumption g∗n ≤ g∗o , and in the last inequal-

ity, we used the condition in the lemma. This is a contradiction. This proves that

under the condition of the lemma, g∗n > g∗o . The same logic can prove the opposite

direction.

B.5 Effect of Local Changes in Acquisition Rate

Section 4 considered a complete ban on acquisitions. Here we derive the analog to

Lemma 3 for local changes in the acquisition rate around the original steady state, i.e.,

blocking a marginally higher fraction of deals. There are two countervailing effects.

Given a fixed growth rate, a lower acquisition rate decreases the BGP ecosystem dom-

inance (equation (16)). Lower ecosystem dominance reduces tying, which increases

πS and encourages entry. We refer to this as the discouragement effect of ecosystem

dominance; on the other hand, a slower pace of acquisitions discourages entry by

lowering the option value of acquisition. We refer to this as the rent-sharing effect.

Lemma 7. A small decrease in µ (stricter acquisition policy) leads to a higher BGP growth

rate if

β

(
πP

κ(g∗)(ρ+ g)
− 1

)
︸ ︷︷ ︸

M&A Premium

<
πS
κ(g∗)︸ ︷︷ ︸

ROE of Target Firm

× d log πs
dι︸ ︷︷ ︸

Profit - Dominance Elasticity

× dι

dµ︸︷︷︸
Impact on Dominance

The impact of the rent-sharing effect is summarized by the share of value accrued

to the standalone firms as a fraction of their standalone value when they are acquired,

which is the measure of the acquisition premium from our model. The direct effect is

measured by the elasticity of tying with respect to ecosystem dominance.

We further break down the discouragement effect into three parts. First, the direct

impact of a decrease in the acquisition rate reduces ecosystem dominance. This is
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measured by
dι

dµ
=

g

(g + µ)2
.

Secondly, the reduction in the ecosystem dominance increases the profits of the star-

tups because the platform reduces tying, measured by

d log πs
dι

=
γLP (1− δ)

1 + γLP (ι+ (1− δ)(1− ι))
.

Lastly, this increase in the profits encourages more entry and more growth if the

standalone firms are valued mostly due to their profits, measured by the profits as a

fraction of firm value, the return-to-equity (ROE) of targets in the data.

Proof. To derive the impact of a change in acquisition rate on the long-run growth, we

utilize the implicit function theorem. More precisely, we define a function

T (g, µ) ≡ (ρ+ g)κ(g)− πs
(

µ

µ+ g

)
− βµ

(
πP
g + ρ

− κ(g)

)
.

The balanced-growth values are such that T (g∗, µ∗) = 0. The first-order impact of a

small increase in µ on g can be written as:

dg∗

dµ∗
= −∂µT (g∗, µ∗)

∂gT (g∗, µ∗)
.

We now calculate the terms separately. In the first step, we want to show that ∂gT (g∗, µ∗) >

0:

∂gT (g∗, µ∗) = κ(g∗) + (ρ+ g∗)κ′(g∗) + π′S

(
µ

g + µ

)
µ

(g + µ)2
+ βµ(

πP
(g + µ)2

+ κ′(g)).

Since every term on the RHS is positive, we conclude that ∂gT (g∗, µ∗) > 0. Thus,
dg∗

dµ∗ > 0 if and only if ∂µT (g∗, µ∗) < 0:

∂µT (g∗, µ∗) = −
(
π′S

(
µ

µ+ g

)
g

(g + µ)2
+ β

(
πP
g + ρ

− κ(g)

))
.

Thus dg∗

dµ∗ > 0 if and only if

β

(
πP
g + ρ

− κ(g)

)
> −π′S

(
µ

µ+ g

)
g

(g + µ)2
.

To convert the equation into the form in the lemma, we expand the derivatives and

divide both sides of the inequality by κ(g).
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B.6 Planner’s Solution

We characterize the solution to

ρWSP (N) = max
LP ,LY ,Ṅ

log ((1 + γLP )N)
1

σ−1 LY−

(
LP + LY + κ

(
Ṅ

N

)
Ṅ

N

)
+ṄWSP ′(N).

Optimal entry of the planner equates the social value of a new firm to the static entry

costs:

WSP ′(N)N = κ′

(
Ṅ

N

)
Ṅ

N
+ κ

(
Ṅ

N

)
.

Using the definition g = Ṅ
N

WSP ′(N)N = κ′ (g) g + κ (g) .

Differentiating both sides with respect to time:

WSP ′(N)Ṅ +WSP ′′(N)NṄ = κ′′ (g) gġ + κ′ (g) ġ.

Differentiating the Bellman equation, we have

ρWSP ′(N) =
1

σ − 1

1

N
+ κ′

(
Ṅ

N

)
Ṅ

N

Ṅ

N2
+ κ

(
Ṅ

N

)
Ṅ

N2
+ ṄWSP ′′(N).

From the first order condition:

ρWSP ′(N) =
1

σ − 1

1

N
+WSP ′(N)

Ṅ

N
+ ṄWSP ′′(N)

From the differentiated first-order condition:

ρWSP ′(N) =
1

σ − 1

1

N
+

1

N

(
κ′′ (g) gġ + κ′ (g) ġ

)
Multiplying both sides by N and use the first-order condition again

ρ
(
κ′ (g) g + κ (g)

)
=

1

σ − 1
+
(
κ′′ (g) g + κ′ (g)

)
ġ.

B.7 Proof of Lemma 4

Proof. Under constant markups, the markup component of the equilibrium with or

without acquisitions stays the same, and thus the markup component is irrelevant to

the welfare impact. In addition, we argued that the utilization component also stays

constant for interior tying. Thus we can write the change in welfare as

∆W =

∫ ∞
0

e−ρt
(

1

σ − 1

∫ t

0
(gτ − g∗o)dτ − κ(gt − g∗o)

)
dt.
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We isolate the first component and simplify it:

1

σ − 1

∫ ∞
0

∫ t

0
(gτ − g∗o)dτdt =

1

σ − 1

∫ ∞
0

∫ ∞
τ

e−ρt(gτ − g∗o)dtdτ

=
1

ρ(σ − 1)

∫ ∞
0

(gτ − g∗o)dtdτ,

where the first equality changes the order of integration, and the second equality eval-

uates the inner integral. Plugging this back into the welfare formula, we reach the

result in the lemma.

B.8 Variable Markup Solution

Let the platform’s quality αP = (1+LPγ) and startups’ quality αS = (1+LPγ(1−δ)).

The first order conditions to the platform’s problem (25) of choosing tying and prices

are

FOCpP
1

pP

σ − (σ − 1)sP
(σ − 1)(1− sP )

+
(pP − 1)

(σ − 1)

[(
∂αP
∂pP

αP
−

∂αS
∂pS

αS

)]
= 0 (31)

FOCδ

[
∂αP
∂δ

αP
−

∂αS
∂δ

αS

]
+

[
(σ − 1)

pP

sP
1− sP

]
= 0 (32)

where sP ≡
ιαP p

1−σ
P(

ιαP p
1−σ
P + (1− ι)αSp1−σS

) is the platform’s market share.

(33)

The first term in (31) is the one that appears in the standard variable markup case

where αP and αS are different but constant and a firm with a non-zero mass of va-

rieties imperfectly competes with a competitive fringe of standalone firms. As in the

standard problem this term captures the platform’s trade-off between its extensive

and intensive profit margin when raising the price. The second term captures the

marginal effect on the quality spread between the platform and the startups induced

by changing time use through prices.

B.9 Micro-Foundation for the Platform Utilization Elasticity

This section provides a micro-foundation for the platform utilization elasticity and

links it explicitly to competition between different platforms in the platform services

market. Suppose there are J different platforms providing services in the economy.
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The final quality of an individual product is determined by a Cobb-Douglas aggrega-

tor across the utilization of these platforms. More specifically,

U = ΠJ
j=1u

1
J
j .

The standalone firms take as given the prices set by platforms, {qj}Jj=1. Given these

prices, the profit maximization problem of an individual firm for the service from

platform j is

max
uj

1

σ

1 + γLPU

1 + γLP (ιUP + (1− ι)US)
−

J∑
j=1

qjuj .

Taking the first-order condition, we have the optimal utilization of each individual

platform

qj =
1

σ

1
J γLPu

1/J−1
j Πk 6=ju

1/J
k

1 + γLP (ιUP + (1− ι)US)

Although fully characterizing the equilibrium outcome with multiple strategic plat-

forms requires us to impose additional structures on the equilibrium, which is outside

of the scope of this paper, we note that if we relabel ε = 1
J , the demand curve from the

standalone firms resembles the one considered in the main text:

qj =
1

σ

εγL̃ju
ε−1
j

1 + γLP (ιUP + (1− ι)US)
,

with L̃j = LPΠk 6=ju
1/J
k . In this micro-founded model, ε is related to the competition

in the market for platform services. More precisely, ε decreases in the number of

platforms in the economy, and vice versa.

B.10 Proof of Lemma 5

Proof. Writing out the first-order conditions for up and us:

γLP
σ

εγuε−1 (1 + γLP (ι(u∗)ε + (1− ι)U ε))− εγuε−1 (ι(u∗)ε + ε(1− ι)U ε)
(1 + γLP (ι(u∗)ε + (1− ι)U ε))2

= ψ

and
γLP
σ

ε2γU ε−1 (1 + γLP (ι(u∗)ε + (1− ι)U ε))− εγU ε−1 (ι(u∗)ε + ε(1− ι)U ε)
(1 + γLP (ι(u∗)ε + (1− ι)U ε))2

= ψ.

Taking the ratio and canceling redundant terms:

ε− ν
1− ν

(
us
up

)ε−1
= 1

where ν =
ιuP

ε+ε(1−ι)uεS
1+γLP (ιuP ε+(1−ι)uεS)

. For uS > 0, ν < ε. Inverting this equation, we have

the result as in the lemma.
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B.11 Revenue Sharing With Endogenous Time Use

We prove that platform utilization is always higher than startup utilization when plat-

form time use is endogenous. With endogenous time use LP , the platform’s profit

maximization problem becomes

max
uS ,uP

ιπP + (1− ι) ε
σ

γLPu
ε
S

1 + γLP
(
ιuεP + (1− ι)uεS

) − (ιuP + (1− ι)uS)ψ. (34)

subject to:

LP =
1

σ − 1
− 1

γ(ιuεP + (1− ι)uεS)
.

DefineP ≡ (ιuεP+(1−ι)uεS), Pe ≡ (ιuεP+ε(1−ι)uεS), andD ≡ (1+γLP (ιuεP + (1− ι)uεS))2.

The first order conditions are

[uP ] :
ε

σ
ιuε−1P

(
(1 + γLPP )( Pe

P 2 + γLP )− (ι+ γLPPe)(
P
P 2 + γLP )

D

)
= ιψ,

[uS ] :
ε

σ
(1− ι)uε−1S

(
(1 + γLPP )( Pe

P 2 + εγLP )− (ι+ γLPPe)(
P
P 2 + εγLP )

D

)
= (1− ι)ψ.

To show that uP > uS , divide the first order conditions:

uS
uP

=

(
Pe
P 2 − ι PP 2 + εγLP (1− ι) + ε(γLP )2(P − Pe)
Pe
P 2 − ι PP 2 + γLP (1− ι) + (γLP )2(P − Pe)

) 1
1−ε

.

For uP > uS , it must be that

Pe
P 2
− ι P

P 2
+ γLP (1− ι) + (γLP )2(P − Pe) >

Pe
P 2
− ι P

P 2
+ εγLP (1− ι) + ε(γLP )2(P − Pe)

(1− ε)γLP (1− ι) + (1− ε)(γLP )2(P − Pe) > 0.

All terms on the left hand side are positive (note P − Pe = (1 − ε)(1 − ι)uεS), so the

proof is complete.

B.12 Heterogeneous Firms Extension

In discussion of the dynamic equilibrium, we focus on a balanced growth path where

aggregate productivity AtNt grows at a constant rate. Growth in a balanced growth

path for this economy comes from creating new products net of exit. To characterize

the entry-exit decisions of firms on a balanced growth path with a growth rate of g,
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Figure B.2: Platform Time Use and Platform Service Price, Revenue Sharing Model
Note: Service price and platform time use as functions of ecosystem dominance in the revenue sharing

model. Model parameters are the same as in Table 2, plus ε = 0.1 and ψ = 0.05.

we characterize the value of product lines, depending on whether they are owned by

a startup or by the platform.

Both the value functions of the platform-owned goods and the standalone firms

can be solved in closed-form, given a growth rate such that ρ+ g > ν2

2 . These closed-

form solutions are convenient for computation of the model but offer similar eco-

nomic insights as in equation (29) and (30).

Lemma 8 (Value Function). On a balanced growth path, the equilibrium value of firms are

given by the following equations:

vP (a) =
1

ρ+ g − ν2

2

πP e
a +

ψ

ρ+ g

(
1

1 + ηP
e−ηP (a−aP ) − 1

)
,

and

vS (a) = vP (a)− πP − πS
g + ρ+ µβ − ν2

2

ea − e−ηS(a−aS)
(
vP (aS)− πP − πS

g + ρ+ µβ − ν2

2

eaS

)
.
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C Quantitative Appendix

Figure C.3 plots the merger premium in each steady state for different values of the

platform technology γ. As the platform technology grows, the merger premium in-

creases because the difference in the value of a product in the hands of the platform

versus the startup grows as the technology grows.

4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

Figure C.3: Merger Premium Increases in Platform Technology
Note: Merger premium as a function of γ. See section 6.4 for details on the exercise. Parameter values in

Table 2.
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