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Abstract

This paper explores sorting and the wage structure through the lens of teams.

A firm collects workers of differing roles to produce in teams, subject to a noisy

team assembly cost. The equilibrium captures the intuition behind the classic Becker

(1973) matching model, yet this model requires fewer restrictions on the production

function. Further, it allows for a tractable framework for analyzing large teams in

firms. The model admits applications, such as wage inequality and tax policy. We

discuss two applications through the lens of this framework: the effect of production

complementarities on the distribution of wages and the spillover effect of taxation

on co-workers. The production externality in teams and team assembly cost provide

both a new framework for standard applications and tractability.

1 Introduction

Modern production processes are organized in teams. Workers differ from each other
both horizontally (their role/occupation in teams) and vertically (their skill within this
role). The distribution of these skills and the complementarity or substitutability among
these roles are important for understanding the wage structure of the economy. Match-
ing models may be amenable to addressing an exploration of these complementarities.
However, matching models since Becker (1973) direct attention mostly to matching be-
tween firms and workers. These models assume away complementarities between work-
ers in different roles.
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This paper builds a framework of teams in firms that is amenable to salient features
of modern teams. First, there are many potential roles on a team. Second, there is
vertical differentiation within these roles. Third, the cross-role complementarities are
heterogeneous across types. For instance, managers may add more value to skilled
workers than unskilled workers through better understanding subtle strategic and time
management practices. Thus, this project has immediate data applications.1

This paper builds a model that rationalizes heterogeneous wage correlations among
occupation pairs in a matching framework. In the model, firms hire workers of different
occupations from competitive labor markets to form teams. Each team is composed of
one worker from every occupation. Workers differ in their abilities within their occu-
pation. Whether high-wage workers tend to work together depends not only on the
pairwise complementarities as in Becker (1973), but also the entire complementarity
structure of team production function and the skill distributions within each type.

Matching more than two occupations is not a trivial task. Classical conditions from
matching theory (e.g., modularity of production) that guarantee existence of equilibrium
do not apply in the general setting.2 We introduce a team assembly cost to gain tractabil-
ity. The team assembly cost is proportional to the concentration of the distribution of
types within a firm. In order to assemble a more complementary team, firms must pay a
higher cost to target their assembly process. This cost captures the time and effort in the
recruiting process to figure out the abilities of workers and how they complement each
other. The firm’s decision problem balances the motive of revenue maximizing (better
teams) and the motive of cost saving (harder to assemble the right team). The resulting
input decision is partially targeted: Firms form teams that generate higher output with
higher probability due to the revenue motive, but there remains a degree of randomness
due to the cost motive.

The partially targeted input decision generates non-pure matching among occupa-
tions. High ability workers sometimes work with low-ability coworkers because it is
costly for their employers to match teams perfectly. This result captures the fact that the
rank correlation across occupations within firms is in between 0 and 1. Second, it simpli-
fies the characterization of an equilibrium of many-agent matching. The cost of forming
a team turns an extensive input decision (which team composition) into an intensive-
margin decision (how many of each team composition). We establish the existence of a
matching equilibrium with multiple occupations. An integral equation system charac-

1We have a current dataset under disclosure review to illustrate the benefits of this framework and
confirm the priors of the model.

2Mathematically, it extends the two-dimensional Monge-Kantorovich problem into multi-marginal
problem.
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terizes the allocations and the wages from this matching equilibrium. This equilibrium
system is tractable and fast algorithms have been developed to solve it (e.g., Knight,
2008; Cuturi, 2013).

We further parametrize the model in order to provide a framework for data applica-
tions. We assume (1) there is a common ranking of worker abilities (high type workers
are more productive in every team) and (2) abilities of workers enter production as a
quadratic function. We derive closed-form solution to the slope of wage profile within
each occupation with these two assumptions. The wage difference between high-type
and low-type workers within each occupation depends linearly on their own ability
and the expected rank of their coworkers of different roles. The coefficient in front of
each coworker occupation measures the complementarity between their abilities. This
closed-form relationship allows for a flexible characterization of complementarity among
occupations.

Using matched employer-employee data, a researcher can take individuals within an
occupation and observe the wage distribution at the firm across occupation and skill
rank. The rank correlation across all firms between the rank of each occupation deliv-
ers a natural result on sorting at firms across individuals. In particular, this empirical
approach allows a researcher to characterize heterogeneous sorting across types. Char-
acterizing the rank correlation at firms requires no economic theory. However, economic
theory is key understanding how these heterogenous sorting patterns across types trans-
mit to wages.

Workers that provide significant complementarities to other workers will receive a
higher wage as the firm assembles the team. The theoretical result allows for simple
functional forms that can be taken to the data. When evaluating data counterparts, the
estimation of the wage function does not require information on the cost of forming
teams. The cost of forming teams only matters for counterfactual analysis, but not for
evaluating how the complementarity structure of team production transmits to wages.

In our specified production function and estimated responsiveness, we then explore
policy applications. We start with the introduction of a progressive tax on managers.
The ripple effects of the policy depend on the strength of sorting and estimated respon-
siveness to coworkers.

This paper makes three main contributions. First, we provide a framework to study
team formation among workers with heterogeneous skills. The equilibrium framework
is tractable enough to accommodate rich assumptions on the distribution of abilities and
assumptions on the complementarity and substitutability among occupations. Second,
we document how this framework can easily be brought to data to evaluate a host of
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issues. Third, this paper highlights the spillover effects through complementarities in
production. Technology shocks that improve certain occupation’s productivity, or public
policy that creates wedge for certain occupations, will transmit to other occupations
through their complementarities and the matching pattern.

Related Literature
This paper is related to matching theory and the study of teams.
Economists have long been interested in matching and sorting both where individuals
match with other individuals and where individuals match with firms. Gale and Shap-
ley (1962) and Becker (1973) pioneered a large theoretical literature on matching without
frictions. Becker (1973) provided the fundamental intuition behind the complementari-
ties and sorting: without frictions, complementary types will match. Since Becker (1973),
this work has been extended to a wide array of contexts.

While these models illustrated the importance of the underlying complementarities
to the matching process, they didn’t address frictions in the matching process. It is hard
for people to perfectly target their optimal match in many markets. Since Stigler (1961),
economists have tried to reconcile theoretically the idea of “imperfect sorting” through
the lens of search frictions in individuals finding firms and matching with them. Chade
et al. (2017) review this literature. and extend it to markets with search frictions.

We build on this literature in two ways. First, we endogenize the search and matching
process simultaneously. The model builds rational inattention in the search and team
assembly process as Wu (2019) did for the firm-worker matching process. Second, we
move the theory away from worker-firm matches to worker and coworker matches. This
provides a more intuitive link on sorting between types. Firms in this context simply
provide the technology to match coworkers. Thus, the firm still matters in that they
absorb search costs and facilitate teams but we do not need to attribute to them any
fundamental value that is disconnected from the collection of agents that work for the
firm.

Many papers deal with the problem of assigning rank or value to firms in the empir-
ical and quantitative literature on sorting (Abowd et al., 1999; Bagger and Lentz, 2018).
Because there is no obvious way of ranking firms, economists need to make certain as-
sumptions that build a quality measure of a firm. This has been explored in a sorting
framework in a host of papers (e.g. Abowd et al. (1999), Hagedorn et al. (2017) Lentz
et al. (2018) Bagger and Lentz (2018)). These papers find that firms are indeed an im-
portant determinant of worker’s wages. New papers, however, have questioned whether
this is in fact the case (e.g. Bonhomme et al., 2019), which suggests direction on the effect
of co-workers rather than firms is more important.
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Another reason to direct attention to co-workers is the difficulty of ranking firms,
which has received recent attention (Sorkin, 2018). When firms are ranked according to
the wage premium they provide, it is hard to understand what this truly reflects about
the “firm” component. As Lopes de Melo (2018) notes, the dependency on coworkers
is likely a larger effect than firms. However, Lopes de Melo (2018) does not provide a
structural framework to fulfill this task. In making our theoretical model tractable, we
can overcome the abstract concept of the firm and more intuitively speak to the matching
between coworkers.

Our theoretical framework builds on applications of transportation theory in eco-
nomics. Ever since Monge (1781), economists and social scientists have thought through
the problems of moving objects from one space to another. This has broad applications,
and gained renewed interest with Kantorovich (1942) and more recently with Villani
(2009). Economists have also noted the wide array of applications of transportation the-
ory (Galichon, 2016). In the labor market, Lindenlaub (2017) uses applications from this
framework to speak to worker-firm matches.

We make use of two unique tools from optimal transport theory. First, we apply
multi-marginal optimal transport (Pass, 2014; Carlier et al., 2014). The key principle is
that multi-marginal matching contains N (e.g. team) agents and maps them to a team
rather than 2 (e.g. worker-firm). Many problems in economics are about many agents
(i.e. > 3) matching, and thus our goal is to extend the insights from optimal transport
theory to these environments.

The balancing of targeting search and reducing search cost enables a smoothing of the
maximization problem. The basic principle contains the classic tradeoff in economics:
balancing the returns of the optimum with the cost of targeting. In our scenario, there
are optimal teams that entrepreneurs aim to assemble, but it is costly to assemble them
with exact precision. Because of this cost, entrepreneurs will tend to sort people into the
right teams but their ability to sort will be limited. This makes a model that would be
complicated a potentially have many solutions unique and tractable.

2 Model

The goal of the model is to build a framework of team assembly with heterogeneous
workers. The model is a generalization of Becker (1973), where heterogeneous work-
ers are matched with heterogeneous firms. The environment has two important new
features: First, we consider the matching of workers from multiple occupations (≥ 2);
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Second, we introduce a cost of assembling teams that firms face in terms of matching
optimally across occupations. Due to the cost, team assembly is noisy in the sense it
deviates from the optimal allocation (net of cost). The noise in assembling teams allows
us to characterize equilibrium of the model for generic production functions, and offer
a parsimonious way of rationalize the mismatch pattern in data.

We first introduce the environment given some general production function for teams.
We then discuss equilibrium. This general model serves as the foundation then for an
exploration of specific functional forms on production.

2.1 Environment

There are measure 1 of firms in the economy. Each firm has measure 1 of teams to
assemble and each team requires labor input from N occupations to produce output.
The outputs are sold in a competitive market with price 1. For now, in order to isolate
the matching process of occupations, we do not model the output market and the entry
decision of firms.

For each of the occupations n ∈ {1, ..., N}, there are measure 1 of workers. They differ
by their type xn ∈ [0, 1]. We assume xn is uniformly distributed, so xn can be interpreted
as quantile within occupation n’s type distribution. A firm then produces output from
a measure 1 of teams, where each team individually inputs x which is assembled across
the N occupations:

f (x) = f (x1, ..., xN)

.
It is helpful to amend this framework with a simple assumption. When the partial

derivative with respect to occupation n is positive, fn(x) ≥ 0, we assume workers are
vertically differentiated. The team is more productive when it has a higher type xn

worker. In this case, xn can be interpreted as the rank of productivity within occupation
n. The output of different teams is perfectly substitutable within a firm. So, denoting
the probability density function of the worker mix x within the given firm as a(x), the
total production of the firm is:

∫
x

f (x)a(x)dx.

Two assumptions are crucial here: a firm only has measure 1 of teams to assemble
and output is linear. Both assumptions are stark stands about reality, yet it follows the
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tradition of matching models and greatly simplifies our analysis. We also assume all
people participate in the labor market (outside option is −∞) in order to limit our focus
to allocations across teams.

Workers are hired from N competitive labor markets, one for each occupation. Firms
take as given wn(x), the wage for x type worker within occupation n. If the distribution
of labor mix within the firm is a(x), the total labor cost of the firm is ∑N

n=1
∫

x wn(xn)an(xn)dxn,
where an(x) is the marginal distribution of a(x) in dimension n.

The environment described so far is very similar to transferable utility matching
models, except we are consider matching of N ≥ 2 occupations . When there are only
2 occupations, it is identical to Becker’s matching model. Now we introduce the key
ingredient to make our model different. Our new addition here in order to get a tractable
idea of team structure is a cost of assembling teams, which smooths out the problem
and can be interpreted as an information processing cost. This entropy cost generates a
degree of mismatch in the economy and extends the Becker model to deliver wages and
allocations that depend on the processing cost as well as the set of potential matches in
the economy.

Assume within occupation n’s labor market, the types are distributed according to the
uniform distribution.If a firm chooses to form teams according to the a(x) distribution,
it needs to pay a cost. The cost here is scalar c multiplied to Kullbak-Leibler divergence
between the chosen team mix a(x) and the exogenous distribution of worker types:

cost of team assembling = c
∫

x
a(x) log a(x)dx.

The Kullbak-Leibler divergence is convex in a(x) and is minimized when the firm
chose the exogenous distribution. This cost introduces a motive for firms to stay close to
type distribution of the market. The scalar c weighs cost saving motive against revenue
maximization motive. When c is large, firms will stay closer to the market distribution.
When c is small, firms stay closer to the revenue maximization decision, which is the
case of matching models in the Beckerian spirit.

The entropy cost has both economic and mathematical roots. One economic story is
rational inattention–it is highly costly for individuals to optimally allocate attention to
building the perfect team. Other stories on a related note might be a path dependency
in team structure or incomplete information on worker types. The reason we take a
stand on the structure of the cost comes from standard practice in information theory.
Individuals with limited information will tend to pull from the existing distribution in
the market for agents. The mathematical origins are from information theory and have

7



a broad array of applications in fields such as machine learning and image processing.

2.2 Planner’s Problem

The social planner’s problem illustrate the tradeoff in the environment. Consider a social
planner that aim to maximize the total output net of the cost of team assembling:

max
a(x)

∫
[0,1]N

f (x)a(x)dx− c
∫
[0,1]N

a(x) log a(x)dx,

s.t. ∫
[0,1]N−1

a(x)dx−i = 1, ∀i.

The social planner’s problem is a concave problem. It admits a unique interior solution
that satisfies the following first-order condition in (a(x), {Vi}i):

f (x)− c log a(x) =
N

∑
i=1

V∗i ,

∫
[0,1]N−1

a(x)dx−i = 1, ∀i.

The socially efficient allocation equalized the marginal benefit of forming team, f (x), to
the marginal cost, c log a(x) to the sum of shadow value of worker supply ∑i V∗i .

2.3 Firm’s Optimal Decision

We can now write out the firm’s maximization problem. Each firm takes the wages
of type x within occupation n as given (wn(x)) and solves the problem of maximizing
profits subject to paying out wages and a team assembly cost.

max
A(x)

∫
[0,1]N

f (x)a(x)dx︸ ︷︷ ︸
Production

−
N

∑
n=1

∫ 1

0
wn(xn)dan(xn)dxn︸ ︷︷ ︸

Wage Bill

− c
∫

x
a(x) log a(x)dx︸ ︷︷ ︸
Entropy cost

.

A firm’s optimization problem is strictly convex when c > 0, as the production and wage
part is linear and the cost of assembling team is strictly convex in A(x). The first order
condition of firm’s problem then is as follows:

a(x) = exp
(

f (x)−∑n wn(xn)

c
− 1
)

.
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The optimal input decision looks similar to an optimal input problem in standard
models, adjusted by the entropy cost. The equation expresses how firm’s labor demand
function responds to the mix of workers. A firm will want to hire more labor than
supplied from the market if the profit from this kind of mix, a(x) is high. The cost of
assembling teams governs how input decisions respond to profit. When c increases, the
input decision is more detached from profit and firms assemble teams more randomly.
We now turn our attention to the general equilibrium results that emerge from the entire
measure of firms optimizing.

2.4 Equilibrium

All firms operate through assembling teams in a competitive labor market. In each
market for occupation n, we look for a wage scheme wn(x) such that demand and supply
for workers equalize. In our notation, it means the measure A(x) and V(x) are equal for
any x with positive supply. Recall A(x) and V(x) are the distributions of worker supply
mix within the firm and within the general market respectively.

The total demand for occupation n worker with type x is:∫
x−n

a(x)dx−n = 1.

As all worker of type xn in occupation n will participate with probability 1, if wn(xn) >

0. Almost surely, the left and right hand sides of the market clearing condition has to
hold in terms of density for x with wn(xn) > 0. The market clearing condition in density
requires:

exp
(
−wn(x)

c

) ∫
x−n

exp
(

f (x, x−n)−∑n′ 6=n w′n(x)
c

− 1
)

dx−n = 1.

The following definition formally characterize the competitive equilibrium we are look-
ing for.

Definition 1 (Competitive Equilibrium)
A competitive equilibrium is a tuple of wn(x) such that the following condition holds whenever
wn(x) ≥ 0

exp
(
−wn(x)

c

) ∫
x−n

exp
(

f (x, x−n)−∑n′ 6=n w′n(x)
c

− 1
)

dx−n = 1
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Proposition 1 (Existence of equilibrium)
The competitive equilibrium exists.

Proof 1
Relabel wn(x) as the market price for "commodity" x and f (x)− c log a(x) as the utility function
for the firms. We can interpret the market equilibrium as an exchange economy for commodity
x. The existence of equilibrium can be established using results in classical work such as Ostroy
(1984)

2.5 Wages

Our ultimate goal in this paper is to study the implications of this multi-occupational
model on the wage structure of the economy. In this section, we show the model delivers
a tractable wage structure, closely linked to information we observe from a matched
employer-employee dataset. Let’s focus on occupation n and an interval of worker type
(x, x + ε] such that wage is positive. The market clearing condition needs to hold on
density at these points. We can invert the market clearing condition to get the following
equation for the wage:

wn(x) = c log
∫
[0,1]N−1

exp
(

f (x, x−n)−∑−n w−n′(x)
c

− 1
)

dx−n. (1)

There is a natural interpretation to Equation 1. The wage of a type xn worker is
equal to her productivity in an expected team. For instance, if xn would tend to work
with people of high and complementary ability, they will get paid a higher wage. The
expectation is taken on the optimal set of teams that involve x workers. The Log-Sum-
Exp function reflects the tendency for the firms to match workers with teams of high
returns. Thus, an individual is paid in accordance with the expectation of the teams
they would work with.

This gets at two points of intuition. First off, the team structure matters for wages
because of potential complementarities. Second, an individual can get a higher wage if
they have a tendency to team with complementary people even if they do not currently
work with them. This is because individuals who can work with highly complementary
individuals can thus command a higher wage, if indeed there are other entrepreneurs
who want to poach them.

When c → 0, all workers will be matched with their best team taken as given the
wage function, we return to a generalized case of Beckerian matching models. When
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c→ ∞, all workers are randomly matched according to their marginal distribution upon
entry. Wage in this case is simply the average productivity over the random teams.

If we assume f is differentiable on the interval (x, x + ε], we can characterize the
slope of this wage function then as follows:

w′n(x) =
∫
[0,1]N−1

a(x, x−n) fn(x, x−n)Π−ndx−n. (2)

We see here how within occupation wage dispersion is driven by both the marginal pro-
ductivity of workers, fn(x, x−n). In addition, changes in an individual’s ability changes
the distribution of workers she matches with, a(x, x−n). This is the team effect. As indi-
viduals abilities improve, firms want to put them in more appropriate teams. This will
then come back through the wage.

We have shown from a generalized framework the driving forces behind wage disper-
sion within types depending on their own productivity and the teams they join. To more
concretely take this production process to data we will employ some specific production
functions that allow us to tease out the coworker and own-worker effect on wages.

3 Specific Production Functions

In this section, we take two specific production functions to extend the model to bring
it to the data. In exploring these two cases, one case will have production exhibit no
complementarities across types and a second example where we embed the complemen-
tarities across types. Our goal is to present these two models to understand what we
are missing when we evaluate how wages operate only at the individual type level. The
parametrization with the quadratic production function in Section 3.2 also allows us to
explore data counterparts in closed form.

3.1 Example 1: Production without complementarities

Assume production is Cobb-Douglas in all roles:

f (x) = ∑
n

αn log xn.

The wage function becomes:

wn(x) = αn log xn + c log
∫
[0,1]N−1

exp
(

∑−n α−n log x−n −∑−n w−n′(x)
c

)
dx−n.
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The level of wage is indeterminate as in the Becker case, but we can look for a "equal
treatment" allocation WLOG

wn(x)− αn log xn = 0.

In this case all workers are paid by their marginal product and their is no spillover of
skills from coworkers.

3.2 Example 2: Quadratic Production

In this example, we assume a simple quadratic production function where complemen-
tarities are pairwise by type.

f (x) =
N

∑
n=1

n

∑
m=1

σnmxnxm.

Guess the entry rule on the worker’s end is a threshold rule by xn. The slope of wage
function becomes

w′n(x) =
∫

Π−n[xj,1]
a(x, x−n)(

N

∑
m 6=n

σnmxm)dx−n.

Rearranging terms we reach

w′n(x) = 2σnnx︸ ︷︷ ︸
own effect

+
N

∑
m 6=n

σnm

∫
anm(x, x′)x′dx′︸ ︷︷ ︸

team complementarity effect

. (3)

Where
∫

anm(x, x′)x′dx′ is the expected type of m-occupation that’s matched with type
x in n-occupation. This parametric case is often adopted by quantitative models as
quadratic functions in generally match data well. Equation 3 has clear economic intu-
ition: the premium earned by a worker is attributed to his own type, and the teammates
he is expected to match with in equilibrium. The weights are determined by comple-
mentarity coefficients in production. This specific case allows for a tractable exploration
of these coefficients, which we turn to now.

With the quadratic production

w′n(x) = 2σnnx + ∑
mn

σnm x̄m
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The slope of wage function at quantile x of occupation n is a function of two forces.
First, the individual’s own marginal productivity (production weight × skill) will de-
termine the wage. Second, the complementarity with coworkers (complementarity ×
expected skill of coworkers) will induce firms to sort specific people to complementary
co-workers. The degree of this sorting strength will determine the team effect on wages.
This has immediate potential data applications.

With MEE datasets we observe wn(x) and x̄m, can estimate σnm

To explore the mechanism at work here, we plot out the wage function and matching
pattern of a case of 3 occupations. Call the 3 occupations manager (M), skilled workers
(S), and unskilled workers (U). Figure 1 plot out the case all occupations enter production
in the symmetric way. The solid line is a case when cost of assembling team is low,
while dotted line is a case when cost is high. The first subfigure shows the wage profile
of workers along different skill level. The shape is convex, reflecting both the change
in self-productivity and complementarity to other occupations. Subfigure 2-4 shows the
expected quantile of coworkers. As occupations are symmetric, we will focus on figure 2.
We can see more skilled managers are matched with more skilled skilled and unskilled
workers, similar to the Beckerian models. Yet due to the cost of assembling teams, the
matching is not perfect. Compare the case of low cost to high cost (solid to dash lines).
When cost of assembling team increases, matching becomes noisier and wage is less
convex in skills.
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Figure 1: Symmetric Production with 3 Occupations

To understand how the complementarity in production affects sorting strength, we
consider the case where workers enter production in a symmetric way. In this case,
we assume managers and skilled workers are more complementary. Compare Figure 2
to Figure 1, we observe managers and skilled workers have steeper wage profile. The
sorting strength is stronger between managers and skilled workers, compared to sorting
between managers and unskilled workers. Notice the differential in sorting strength is
more salient when cost of assembling team is higher.
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Figure 2: Asymmetric Production with 3 Occupations

4 Quantitative Analysis with MEE Data

[Under Data Disclosure Check]

5 Policy Application: Progressive Taxation

This model draws a host of potential policy applications. We explore here an increase
in progressive taxation. How do increases in taxes on high income workers affect their
coworkers? In this framework, taxes will have direct effects on individual workers, but
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also indirect effects through the team formation process.
Overall, the incidence of taxation will depend on the degree of complementarities

across co-workers and the cost of team assembly. Suppose the labor cost for occupation
m is taxed by τ (e.g. wedge).

a(x) = exp
(

f (x)−∑n 6=m wn(xn)− (1 + τ)wm(xm)

c

)
. (4)

Note immediately the tax on the wage transmits to the team structure a(x). This will
induce general equilibrium effects on wages across the distribution, as wages are linked
to the assignment. We further explore this with the labor market clearing condition for
occupation n:

exp
(

wn(x)
c

)
=
∫
[0,1]N−1

exp
(

f (x)−∑n 6=m,n wn(xn)− (1 + τ)wm(xm)

c

)
dx−n.

We now take the first order condition with respect to a change in the tax rate to occupa-
tion m on occupation n with the rate fixed at τ = 0:

∂wn(x)
∂τ

|τ=0 = −
∫ 1

0
anm(x, x′)wm(x′)dx′︸ ︷︷ ︸

Direct Effect (-)

− ∑
n′ 6=n

∫ 1

0
ann′(x, x′)

∂wn′(x′)
∂τ

dx′︸ ︷︷ ︸
Indirect Effect (-/+)

.

The above equation expresses the connection between taxes to a type m and the wage
function for another type n. First, we dub the direct effect as observing how the tax
changes the distribution of workers across firms anm(x, x′)wm(x′). If worker n is with
less productive, or well-matched, type m’s this will lower the wages. Second, there is the
indirect effect in the sense that the tax on m changes the wage of all other types in firms.
Let us discuss an example to make this more clear.

Suppose a tax is increased on managers in a world where firms have managers, low-
skilled workers, and high-skilled workers. This will interact with the firm assembly
through Equation 4. As such, the loss of efficiency in the allocation will induce firms to
pay less for workers across the board. However, there is an indirect effect in the sense
that low-skill workers may be matched to better high-skilled workers. If so, the overall
effect on wages could be positive. If we apply the specific data-applicable functional
forms, this enables simple regressions on tax events to shed light on how spillovers in
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the labor market transmit.3

6 Conclusion

This paper develops a new theory of teams and applies it to matching across coworkers
in firms. We build on the intuition of Becker (1973) but bring in applications from
information theory in order to smooth out the problem of many-person teams. We
utilize entropy-regulated optimal transport which turns an extensive margin problem
(who goes where) into an intensive margin problem – which depends on how easy it is
to assemble teams.

The model lends itself to quantitative evaluation of the degree of the importance
of coworkers on an individual’s wage. Once we have these forces in hand, we can do
policy counterfactuals with changes in tax rates on certain workers. We plan to explore
these forces further in a later edition of this paper and report the connection between the
theoretical framework and the data discoveries. This data is under disclosure review.

3We explore this in a data counterpart to this paper which is currently under disclosure review
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A Appendix

A.1 Example 2: 2-D with Normal Quantile

Assume production a product of normal quantile

f (x, y) = σΦ−1(x)Φ−1(y)

Let’s first solve for the allocation

a(x, y) = exp
(

σΦ−1(x)Φ−1(y)− w1(x)− w2(y)
c

)
Guess the wage function takes the following form

wn(x) = αΦ−1(x)2 +
β

2

Our goal now is to find α and β such that the resource constraints hold. We then plug
the conjecture back to assignment we have

a(x, y) = exp
(

σΦ−1(x)Φ−1(y)− αΦ−1(x)2 − αΦ−1(y)2 − β

c

)
As the problem is symmetric we just need to focus on the first dimension

1 =
∫ 1

0
a(x, y)dy
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We will make the change of variable ỹ = Φ−1(y). The constraint is now written as

1 =
1√
2π

∫ ∞

−∞
exp

(
σΦ−1(x)ỹ− αΦ−1(x)2 − αỹ2 − c

2 ỹ2 − β

c

)
dy

Our next step is complete the square

1 =
1√
2π

∫ ∞

−∞
exp

−(
√

α + c
2 ỹ− σ

2
√

α+ c
2

Φ−1(x))2 + ( σ2

4(α+ c
2 )
− α)Φ−1(x)2 − β

c

 dy

Notice the terms in bracket is proportional to a normal density with standard deviation

2
√

c
α + c

2

So the integral is

1 = 2
√

c
α + c

2
exp

 ( σ2

4(α+ c
2 )
− α)Φ−1(x)2 − β

c


Now we need to find α and β solving

0 =
σ2

4(α + c
2)
− α

β

c
= − log 2

√
c

α + c
2

We get

α =
−c +

√
c2 + 4σ2

4

A.2 Gaussian-Quadratic Case: Generalization to N-Dimensions

We extend the 2-dimensional case to N-dimensions. Suppose the production function
takes the following form

f (x) = 2 ∑
i 6=j

σijΦ−1(xi)Φ−1(xj)

We guess the following quadratic function of wages

wi(z) = αiΦ−1(z)2 + β/N
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According to the allocation function

a(x) = exp(
2 ∑i 6=j σijΦ−1(xi)Φ−1(xj)−∑i αiΦ−1(xi)

2 − β

c
)

With the transformation
x̃ = Φ−1(x)

a(x) =
1

(2π)
N
2

exp(
2 ∑i 6=j σijxixj −∑i(αi +

1
2)x2

i − β

c
)

Lets write everything in matrix form

∑
i 6=j

σijxixj = xTΣx

∑
i
(αi +

1
2
)x2

i = xTΩx

Σ =


0 σ12 ... σ1N

σ12 0 ... σ2N
... ... ... ...

σ1N σ2N ... 0



Ω =


−(α1 +

1
2) 0 ... 0

0 −(α2 +
1
2) ... 0

... ... ... ...
0 0 ... −(αN + 1

2)


The goal is to find vector α and β so that the market clearing condition holds dimension-
wise.
∀i

1 =
∫
−i

a(x)dx

Fix dimension i, we can write the kernel as

xT(Σ + Ω)x. = xT
−i(ΣN−1,N−1 + ΩN−1,N−1)x−i + 2xi ∑

j
σijxj − (αi +

1
2
)x2

i (5)

where the N − 1, N − 1 notation stands for deleting i-th row and i-th column of a
matrix. We want to write the quadratic form in the following form

(x−i − xik1)
T M(x−i − xik1) + k2x2

i

Expanding the quadratic form we have

xT
−i Mx−i − 2xikT

1 Mx−i + kT
1 k1x2

i + k2x2
i (6)
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For (1) and (2) to be consistent, we need

M = ΣN−1,N−1 + ΩN−1,N−1

− kT
1 Mx−i = ∑

j
σijxj (7)

kT
1 k1 + k2 = −αi −

1
2

As (3) needs to hold for any x, it must be

−kT
1 M = Σ̃T

i

where

Σ̃i =


σi1
σi2
...

σiN


Assume M is invertible

kT
1 = −Σ̃T

i M−1

Thus
k2 = −(αi +

1
2
− Σ̃T

i M−1(MT)−1Σ̃i)

A.3 Example: Teams of Size 3

In this problem, workers choose to enter the market for teams of size 3. Each worker
then chooses their role within the (symmetric) team: position 1, position 2, or position 3.
The social planner’s maximization problem is as follows:∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z)F̃(x, y, z)dxdydz (8)

s.t.
∫ 1

0

∫ 1

0
M(x, y, z)dydz = 1 &

∫ 1

0

∫ 1

0
M(x, y, z)dxdz = 1 &

∫ 1

0

∫ 1

0
M(x, y, z)dxdy = 1

Apply Entropy-regulated Optimal Transport:

W(c) = max
∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z)F̃(x, y, z)dxdydz− c

∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z)logM(x, y, z)dxdydz

(9)
With:

M(x, y, z) = µ(x)ν(y)λ(z)exp
(

F̃(x, y, z)
c

)
(10)
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Next we plug in the values here:

W(c) = max
∫ 1

0

∫ 1

0
M(x, y, z)F̃(x, y, z)dxdydz

−c
∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z)log

[
µ(x)ν(y)λ(z)exp

(
F̃(x, y, z)

c

)]
dxdydz

W(c) = max
∫ 1

0

∫ 1

0
M(x, y, z)F̃(x, y, z)dxdydz

−c
∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z)

[
logµ(x) + logν(y) + logλ(z) + logexp

(
F̃(x, y, z)

c

)]
dxdydz

W(c) = −c
∫ 1

0

∫ 1

0

∫ 1

0
M(x, y, z) [logµ(x) + logν(y) + logλ(z)] dxdydz

Using our market clearing conditions yields:

W(c) = −c
(∫ 1

0
logµ(x)dx +

∫ 1

0
logν(y)dy +

∫ 1

0
logλ(z)dz

)
(11)

We want to show that as c→ 0 the problem 10 becomes problem 8. How do we show
this? We take the market clearing equations and plug in 10.

µ(x)
∫ 1

0

∫ 1

0
ν(y)λ(z)exp

(
F̃(x, y, z)

c

)
dydz = 1

ν(y)
∫ 1

0

∫ 1

0
µ(x)λ(z)exp

(
F̃(x, y, z)

c

)
dxdz = 1

λ(z)
∫ 1

0

∫ 1

0
µ(x)ν(yexp

(
F̃(x, y, z)

c

)
dzdy = 1

Gives us:

lnµ(x) = cln
∫ 1

0

∫ 1

0
ν(y)λ(z)exp

(
F̃(x, y, z)

c

)
dydz

= cln
∫ 1

0

∫ 1

0
exp

(
F̃(x, y, z)− lnν(y)− lnλ(z)

c

)
dydz

As c → 0, this becomes a directed search problem whereby we take the maximum,
yielding:

ln µ(x)→ maxy,z F̃(x, y, z)− lnν(y)− lnλ(z)

ln ν(y)→ maxx,z F̃(x, y, z)− lnµ(x)− lnλ(z)
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ln λ(z)→ maxx,y F̃(x, y, z)− lnµ(x)− lnν(y)

Implies

u(x)︸︷︷︸
x best option/wage

= maxy,z F̃(x, y, z)− v(y)︸︷︷︸
y wage

− l(z)︸︷︷︸
z wage

A.4 MMT Theory

Recall γ which is the optimal measure–Pass (2014) indicates that the support of γ,
sprt(γ), is our main object of interest. This area of interest is defined as the smallest
closed subset of M1 ×M2 × ...MI of full mass, γ(sprt(γ)) = 1

We start with a discussion of differential geometry, using Pass (2014) notation. Let
Tx Mi denote the tangent space of Mi at xi, the dual being the cotangent space. We’re
using these to take some differentials (JP: having some trouble with this concept).

The key concepts they adapt are the non-degeneracy and twist conditions:

A.4.1 Non-Degeneracy

At a point (x1, x2) ∈ M1 × M2–assuming D2
x1,x2

has full rank and c is non-degenerate
for some (x1, x2). Then there is a neighborhood N of (x1, x2) such that for any optimal
measure γ, N ∩ sprt(γ) is contained in an n-dimensional Lipschitz submanifold of the
product space. They then extend this to multi-marginal.

A.4.2 Twist

Assume that c is semi-concave and that for each fixed x1 the map:
x2 → Dx1c(x1, x2) is injective on the subset {x2 : Dx1c(x1, x2) exists } ⊂ M2 where c is

differentiable with respect to x1
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