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Abstract

We study the diffusion of a disease or of information in an endogenous network that

consists of heterogeneous individuals. Individuals differ by the cost (value) of infec-

tion (information). Moreover, individuals realize an idiosyncratic match value before

deciding whether to match. We characterize the equilibrium using a system of linear

differential equations with time-varying coefficients. We show strategic complementar-

ity in matching: when others are more likely to accept a match, the marginal utility

from matching with others for each individual also increases. This strategic comple-

mentarity endogenously generates sorting by infection probability, return, and contact

rates. This sorting endogenously slows down the transmission of an infectious disease

and accelerates the diffusion of information. Decentralized equilibrium is inefficient due

to the diffusion externality. Whether the externality is positive or negative depends on

with whom individuals interact with.
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1 Introduction

The diffusion of disease or information transpires through interactions among individuals,

with different returns and different frequencies of interaction with others. We study their

optimal decisions regarding when and with whom to interact with, and the equilibrium

impacts of their matching decisions.

We focus on the impact of sorting, whether people with similar characteristics tend to

interact disproportionally among themselves, on the diffusion process. With a constant

interaction pattern among types, a more sorted interaction pattern leads to higher peak

reproduction number and lower long-run accumulated infection. Quantitatively, the effect

of sorting is stronger when types differ more in how often they interact with others.

Our main contribution is a tractable equilibrium matching model with heterogeneous

agents. We analytically show that positive sorting among individuals with similar returns

due to infection is an equilibrium outcome, even with random meeting technology. Our

second contribution is to show that in presence of heterogeneity and endogenous decisions of

interaction, the diffusion externality can be either positive or negative. Increasing activity

of low-cost types during a pandemic can be welfare enhancing, a prediction relies crucially

on the existence of sorting.

In the model, forward-looking individuals differ by their returns due to infection. Indi-

viduals meet each other through a random meeting process, wherein the total number of

meetings is the product of the innate contact rates of any two type of agents. Upon meet-

ing one another, agents draw idiosyncratic preference shocks regarding matching with each

other, and decide whether to form a match.

An infectious disease or information starts its diffusion at the beginning of the economy.

Whenever an uninfected person meets an infected person, the infection is reproduced and

diffused with some probability. The actual infection status is unknown to agents, but the

agents form beliefs about their own and others’ probability of infection. We study a perfect

foresight equilibrium wherein all individuals behave optimally knowing the risk of infection

forward.

The matching decision trades off the value from social interactions and the expected re-

turn of changing infection status. A costly disease prompts agents to forgo favorable matches

with others, to avoid catching the virus; the presence of valuable information makes agents

tolerate unfavorable matches with others, to increase their chances of becoming informed.

We show that this dynamic decision can be reformulated as a problem of investment with

heterogeneous adjustment costs. The optimal decision can be characterized by a single vari-

able that summarizes how selective agents act in their meetings, which we define as caution.
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Optimal caution is simply the discounted probability of staying susceptible looking forward

multiplied with the discounted return from infection.

The equilibrium can be characterized by two sets of differential equations: (1) equations

that describe the infection dynamics with endogenous diffusion rates (as is standard in the

SIR models); (2) one equation that describes the caution dynamics. All equations are linear

conditional on a path of diffusion rates, allowing for analytical solutions for a subset of

endogenous variables.

Matching decisions are strategic complements. When others are more likely to accept

matches, it become more valuable for individuals to increase their probability of accepting

matches. This strategic complementarity leads to several properties of the decentralized

equilibrium.

We provide analytical results regarding sorting in a SI model (one without recovery from

infection). First, the equilibrium is rank-preserving in caution and infection probability.

At any instant of time, agents with a higher cost from infection are always more cautious

when matching with others and have a higher probability of staying susceptible. Second,

the equilibrium matching pattern is endogenously sorted, although the meeting technology

is random. We show that the sign of sorting depends on the sign of returns due to infection.

In the disease case, equilibrium is positively sorted on characteristics. Agents who suffer

more from disease are more likely to match with others who suffer more; Agents who meet

others more frequently are more likely to match with others who meet more frequently; More

importantly, agents who have a higher probability of infection are more likely to match with

others who have higher probabilities of infection.

The assortative matching in equilibrium affects the speed of diffusion. We derive a

decomposition of the effective reproduction number into: (1) baseline reproduction number,

(2) changing stock of susceptible; (3) reduction in activity, and (4) endogenous sorting.

When the matching network is positively sorted, the diffusion of infection is slowed down;

When the matching network is negatively sorted, the diffusion of infection is accelerated. We

illustrate this insight in the context of COVID-19. In the calibrated version of the model, we

showed the positive sorting on infection probability can reduce the reproduction number of

virus by 27% percent at its peak. This effect is sizable compared to the effect of reduction in

activities (50%). Given two observed patterns regarding COVID-19: (1) the sizable activity

reduction even without policy intervention and (2) the strong heterogeneity of death risks

across different demographic groups, we argue that the sorting mechanism highlighted in

this paper should also play an important role in predicting the transmission of the virus.

To understand the efficiency property of the decentralized equilibrium, we consider a

social planner’s problem. The planner instructs how individuals of heterogeneous types
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should match with each other, subject to: (1) the lack of communication of preference shocks

during the meeting stage; (2) the diffusion dynamics. The planner’s solution differs from

the allocation from decentralized equilibrium in two aspects. First, the planner internalizes

the matching externality due to an increasing return to scale in matching decisions, which is

missing in individuals’ choices. This inefficiency is highlighted in Diamond (1982). Second,

the planner internalizes the fact that the infected agents can further diffuse the infection to

others, which is specific to the setting with a non-rival production of infection.

We highlight that the diffusion externality in the decentralized equilibrium can go either

direction. In the infectious disease case, individuals might match too little or too much com-

pared to the efficient allocation. From a socially efficient perspective, it might be beneficial

to have types with lower loss due to the disease to interact more during the early stage of

a pandemic. This increase in interactions lead to a higher and quicker peak of infection for

low-cost types, which then protect the types with higher loss from catching the disease later.

This type of allocation can never by implemented in a decentralized equilibrium, because the

private incentive always leads to a reduction in activity. In our calibration to the COVID-19

pandemic, we indeed find the socially efficient efficient allocation would increase young age

groups’ interaction within themselves, while simultaneously reduces the interaction between

young cohorts and old cohorts. This prediction relies crucially on the ability of reducing the

interaction between old groups and young groups.

The paper is organized in the following order: Section 2 sets up the diffusion environment

with exogenous matching pattern among heterogeneous individuals, and decompose the re-

production number into various forces; Section 3 describes and characterizes the equilibrium

model that endogenize the matching pattern. Section 4 provides the analytical results re-

garding equilibrium sorting; Section 5 characterizes the social planner’s problem; Section 6

summarizes the quantitative predictions of the model regarding the COVID-19 pandemic.

We conclude in section 7.

Related Literature. This paper is related to the literature that study epidemiology

models with economic agents and the literature on information transmission in decentralized

markets.

A large literature integrates economic theory and epidemiology. Dow and Philipson

(1996) document the assortative matching in terms of HIV infection status, and argue that

it is a force to slow down transmission. Greenwood et al. (2017) and Greenwood et al. (2019)

study an equilibrium model of heterogeneous agents and apply it to the HIV pandemic in

Malawi. In both papers, a force of endogenous sorting operates among agents with different

preferences for risks, and it is a driver of aggregate infection dynamics. Inspired by the recent

crisis of COVID-19, much on-going research has tried to integrate economic models with the
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epidemiology models. For a summary, see the recent literature review Brodeur et al. (2020).

Among them, Acemoglu et al. (2020) considers the optimal lock-down policy with exogenous

contact matrices; Brotherhood et al. (2020) considers activity choices by different age groups

with a random linear matching function; Alfaro et al. (2020) allows heterogeneous agents to

make activity choices and have differential impacts on each other by integrating an exogenous

homophily matrix. Faia et al. (2020) empirically documents the homophily in information

acquisition of individuals during the pandemic and interpret this observation through a lens

of a biased information acquisition model. We differ by considering a two-sided matching

model where the matching network is endogenous.

Recent work by Farboodi et al. (2020) considers a similar environment to ours with

homogeneous agents. Lebeau (2020) studies the interaction among ex ante homogeneous

agents who make participation choice, instead of the probability of interaction in our paper.

We view our paper as complementary to these works, because many equilibrium interactions

featured by these papers are also present in ours. We contribute by addressing heterogeneity

in similar strategic environment.

Our paper is also related to the study of information diffusion in decentralized mar-

kets. Duffie and Manso (2007) and Duffie et al. (2009) consider the diffusion of information

through decentralized meetings. In these models, agents can make decision on the intensity

of meetings, which generates faster speed of information acquisition. Duffie et al. (2014) is

the most related to our paper. They consider an environment where agents have different

contact rates and information quality. Through bilaterally trading with each other via a

double auction, they fully incorporate each others’ private information. Our paper differs in

its focus on the extensive margin of information transmission. We allow agents to turn away

meetings based on their perception of the trading partners and their own states. We believe

our, which complements existing works, is more applicable to the study of disease diffusion

or diffusion of viral information when the price mechanism is less feasible.

Lastly, this paper contributes to the literature on endogenous network formation. As-

sortative matching on numbers of contacts have received much attention from computer

sciences, physics, and sociology (Newman, 2002). Several economic studies have attempted

to understand this phenomena from an equilibrium perspective. Currarini et al. (2009) and

Cabrales et al. (2011) consider sorting on social networks when there is complementarity

in preferences. Jackson and Rogers (2007) show that sorting on contacts can occur due to

differential time of entering. Golub and Jackson (2012) study the implications on social

learning given an exogenous and sorted network. We provide an alternative theory of the

sorting of an information network: heterogeneity in the reward or frequency of contacts

generate sorting due to the interaction between caution and likelihood of infection.
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2 Diffusion on an Exogenous Random Network

We start with a model of diffusion on an exogenous random network. This simple model

prepares the notations for the diffusion block of the equilibrium model, and also provides

insights regarding sorting and diffusion. Matching is more sorted if agents are more likely

to interact with others with their own types. With a constant matching matrix that is

more sorted, the peak reproduction number is higher and the accumulated infection is lower.

Quantitatively, this effect is stronger in a network with large dispersion in how frequently

individuals interact. In a general setting with time-varying matching pattern, we provide a

decomposition of reproduction of infection into (a) basic reproduction number, (b) size of

susceptible population, (c) reduction of activity, and (d) sorting.

2.1 Diffusion with Constant Matching Matrix

Environment.- Time is continuous. There is a unit measure of individuals, differ by their

types j ∈ [0, 1]. The number of matches per instant of time between type j and type

k is given by a contact function m(j, k). Denote the total number of matches for type

j as λj =
∫
k
m(j, k)dk. We normalize the mean number of matches across types to be

1. Different configuration of m(j, k) allows the model to span between random matching

and perfect sorting, and the in-between cases. For example, m(j, k) = λjλk would lead to

random matching, as all types have the same conditional distribution of interacting with

others; m(j, k) = λjδ{j = k}1 would lead to perfect sorting, as all types only interact within

themselves.

At t = 0, εj fraction of type j become infected. Diffusion happens through interactions.

When an infected person meets an uninfected person, the uninfected becomes infected with

probability β0. Meanwhile, an infected individual recovers with rate γ each instant of time.

The following equation system in terms of infected probability i(j, t) and susceptible proba-

bility s(j, t) characterizes the diffusion process:

ṡj(t) = −β0
∫
λ′
m(j, k)ik(t)dk,

i̇j(t) = β0

∫
λ′
m(j, k)ik(t)dk − γij(t).

In order to characterize the equilibrium, we define a new variable accumulated hazard

zj(t) = β
∫ t
0

∫ 1

0
m(j, k)ik(t)dkdτ . With this hazard rate, we can solve the susceptible and

1Where δ is the Dirac Delta function.
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infection probabilities in closed form:

s(j, t) = (1− εj)e−zj(t).

In the appendix, we show the accumulative hazard can be characterized by the following

non-linear integro-differential equation:

Lemma 1 The accumulative hazard that is consistent with diffusion dynamics must solve:

żj(t) = βλ− β
∫
λ′
m(j, k)(1− εj)e−zk(t)dk − γzj(t),

with boundary condition

zj(0) = 0.

Figure 1 illustrates that sorting among heterogeneous agents can reduce the accumulated

infection in the long run. When matching is perfectly sorted, individuals with high contact

rates will only become infected from and infect others with equally high contact rates.

Parametric Example.- We use a flexible parametric example to illustrate the effect of

sorting on diffusion. Suppose λ is distributed according to a log-normal distribution with

mean 1 and varying variance. Suppose:

m(j, k) = ρλjδ{λj = λk}+ (1− ρ)λjλk.

We are interested in two aspects of the diffusion. First, how fast the infection is repro-

duced, which we measure by the peak reproduction number. Second, what is the total impact

of the infection, which we measure by the accumulated population of infection. Figure 1 plots

these objects for different variance in contact rates and different degree of sorting.

In the first panel, we plot the peak reproduction number. With more sorted matching

(ρ increases), the peak reproduction number increases. This effect is stronger with larger

dispersion in contact rates. This is due to two forces. First, the infection is reproduced

faster within high-contact types with stronger sorting; Second, larger fraction of infected

population is high-contact types, which further increases the reproduction number.

In the second panel, we plot the accumulated infection in the long run. With more sorted

matching (ρ increases), the accumulated infection is lowered. This reduction is sizable when

the dispersion in contact rates is high. Although the infection is reproduced faster at its

peak, it affects less people. First, the high reproduction of infection is confined within a

high-contact types. Second, the high-contact types are quickly infected and recover. They

later become less likely to pass on the infection to others.
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Figure 1: Diffusion Outcomes for Different Level of Dispersion and Sorting

Note: all lines based on λ ∼ LogNormal(−σ
2

2 , σ), γ = 1/15, β = 3.1γ, ελ = λ× 10−5.

In summary, sorting can lead to a reduction in the total impact of infection. The size

of this reduction depends crucially on the dispersion of contact rates among individuals.

This simple model leaves several questions unanswered. First, we are unable to address

the impact of time-varying sorting pattern. Second, we cannot make meaningful statements

on efficiency, because we have not specify how individuals differ in their returns due to

infection, their decision making, and its link to sorting pattern. We now address the first

issue with time-varying sorting in the next subsection, and address the second concern with

an equilibrium model in section 3.
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2.2 Sorting and Diffusion

In this section, we provide a formal definition of sorting: individuals with similar characteris-

tics are more likely to interact with each other. We then provide a formula to decompose the

reproduction of infection into (1) changing size of infected and susceptible population, (2)

the composition shift of activity among heterogeneous agents, (3) general change of activity,

and lastly (4) sorting among heterogeneous agents.

Environment.- We additionally assume the contact function m(j, j′, t) is time varying,

which we will provide microfoundation through an equilibrium model. Otherwise, the setting

is identical to before.

We are interested in the matching patterns among individuals. More specifically, are

agents with similar characteristics tend to match with one another? This characteristic can

include risk of infection, the innate contact rate, or loss due to infection. The following

definition seeks to describe sorting in the most general way. For any heterogeneity X, we

define the conditional distribution of x among a type j person as:

MX,t(x|j) =

∫
xk<x

m(j, k, t)dk∫
1

0
m(j, k′, t)dk′

.

Definition 1 (Sorting) space

The matching pattern is positively sorted on X at time t if, for xj > xj′ implies:

MX,t(y|j) F.O.S.D. MX,t(y|j′)

It is negatively sorted if vice versa.

When there is positive sorting on X, individuals with a higher X tends to match more

frequently with others who have a higher X. For example, if the equilibrium is positively

sorted on infection probability, individuals who are more likely to be infected are more

probable to meet others who are more likely to be infected.

The aggregate basic reproduction number at time t is the individual infection hazard

adjusted by the share of each type among susceptible population, as well as the total number

of infection in the economy:

R(t) = β0

∫
k

∫
j

m(j, k, t)
ij,t
It

sk,t
St
djdk.

To interpret this number, we go back to the definition of the basic reproduction number

as the expected number of new infections generated by each infected person. Suppose we
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take two random person from the infected population and from the susceptible population.

Their probability of being type x and x′ are their population share within the two pools.

They interaction with each other with frequency m(x, x′, t). The aggregate number of those

meetings adjusted by β0 would represent the basic reproduction number.

The following lemma provides a decomposition of the aggregate basic reproduction num-

ber, given any path of matching matrix m(x, x′, t). We define the total number of matches

as M(t) =
∫ ∫

m(j, k, t)djdk.

Lemma 2 (Decomposition of Reproduction Number) space

Given any m(x, x′, t), i(x, t), and s(x, t),reproduction number can be written as:

R(t) = R0H(t)A(t)αI(t)αS(t)S(t)

where

(Sorting)

H(t) = 1 +

COVt

(
i(x, t), s(x′, t)

)
Eti(x, t)× Ets(x′, t)

with both the covariance and expectation evaluated using distribution of (ij, sk) according to

the matching pattern at t;

(Aggregate Activity)

A(t) =
M(t)

M(0)
;

(Infected Composition)

αI(t) =
Eti(x, t)

I(t)
;

(Susceptible Composition)

αS(t) =
Ets(x

′, t)

S(t)
.

The focal object of this paper is H(t), a term we define as the homophily index. It

measures how sorted individuals are when they match with each other. When the infection

probability and susceptible probability are positively correlated, the covariance is positive

and H(t) is larger than 1. When the infection probability and susceptible probability are

negatively correlated, the covariance is negate and H(t) is less than 1. Thus, sorting in the

matching matrix provides a accelerator or brake to diffusion of the infection.

A(t) measures how the aggregate number of meetings change compared to the onset of

diffusion. A reduction in meetings will reduces the reproduction number, while an increase in

meetings will increase the reproduction number. Lastly, αI and αS reflects the compositional
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shifts within the infected and the susceptible population. When there are more individuals

with high contact rates among infected population, αI increases; When there are more

individuals with low contact rates among susceptible population, αS decreases.

2.3 Takeaways

Sorting affects the diffusion process. When individuals tend to interact more with others

with similar contact rates, the diffusion of infection is faster yet confined to a smaller group

of individuals. There are several important issues that we could not address using the

exogenous contact matrix model. First, we could not use the model to make prediction about

the actual course of diffusion without observing the time-varying pattern of interactions.

Second, we could not use the model to address questions such as optimal allocation because

the endogenous response of individuals to the diffusion process is not modeled. We thus

investigate an equilibrium model where the matching matrix is endogenous.

3 Diffusion on an Equilibrium Network

In this section, we lay out the environment and characterize the equilibrium. To simplify

terminology, we will refer to the state of being able to diffuse the disease or information as

an infection, and we describe the loss (gain) due to the disease (information) as a return.

A higher return means the individual either suffers less loss from disease, or gains a higher

benefit from information.

Environment.- Time is continuous and potentially runs forever. It terminates with rate

r, when the return due to infection is realized. There is a unit measure of individuals.

Individuals derive utility from interacting with one another. We break down this interac-

tion process into two steps: meeting and matching. Meetings between any two types happen

according to a random meeting function. At each instant of time, there is total λ0 meetings

in the economy, and every type meets other types according to their population share. The

meeting network is not sorted, in the respect that all individuals have identical conditional

distributions of contacting each type.

Upon meeting each other, individuals draw an idiosyncratic preference shock regarding

matching with each other. Specifically, they draw ν from distribution F (ν). We assume

F (ν) is a continuous distribution. Define f(ν) as its pdf, and α(ν) = f(ν)
1−F (ν)

as its hazard

function. To simplify notation, we assume it is identical in the analytical descriptions, but

allow F (ν) to be type-specific in the quantitative analysis.

We discuss separately the micro-foundations of the diffusion process in terms of disease
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and in terms of information. Both lead to the same optimization representation of individ-

uals.

Disease.- An infectious disease is discovered in period t = 0. At t = 0, ε fraction of

individuals of each type is infected. Individuals do not know their own infection status or

that of others, but they can form expectations of infection probability. The reproduction

of the disease will happen only if one side of a match is infected while the other side is

susceptible, with the baseline infection probability β0.

If a person of type j is infected, he experiences a terminal return φj when the economy

terminates, which is translated to an expected flow return of rφj. We offer several inter-

pretations of this flow return due to infection. First, one can interpret this utility loss as

the expected event of developing symptoms for an asymptomatic infected person. Second,

one could interpret this loss as the cost of being in an intense care unit or of being forced

to quarantine. As a result, it is both a primitive epidemiological parameter and a policy

parameter. At any instant of time, infected individuals recover with rate γ.

Information.- There is an hidden aggregate event that will arrive with rate r. Consider

this as an adoption of new technology or the initial offering of an asset. Suppose at t = 0,

each individual observes a private signal.

When two agents meet, an information exchange happens with probability β0. We model

information exchange as two agents simply merging their set of signals, after which each

walks away with the same set of signals.

Signals can be potentially valuable. Specifically, ε fraction of the initial signals would

yield reward. When the economy terminates, individuals who hold the reward-bearing signal

would gain a return according to their types. At any instant of time, γ fraction of signals

are lost.

We make a further assumption regarding the preference shock distribution: 0 < F (
rφj
r+γ

) <

1 for ∀j. This assumption ensures that there is always a positive possibility that agents in

every type would want to form a match, because they might meet someone with a high

match-specific value.

Preference Shock.- We first re-write the matching decision with preference shock as an

concave utility maximization problem of choosing a matching probability. Suppose an in-

dividual sets threshold z for meetings: she accepts a match if ν > z and reject a match

if ν < z. Given this threshold, the probability of accepting match is q = 1 − F (z). The

expected value of preference shocks is w =
∫∞
z
νdF (ν). Using these two equations we define

a convenient utility function from matches:

w(q) =

∫ ∞
F−1(1−q)

νdF (ν).
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With this utility function, it is as if the individuals are choosing what fraction of meetings

to consume, given a concave utility function w(q) with

w′(q) = F−1(1− q) > 0,

w′′(q) = − d

dq
F−1(1− q) < 0.

Dynamic Decision.- We now formally describe type i’s problem. To clarify the notation,

we use a capital letter for each of the aggregate variables, and the lower case of the same letter

for an individual’s choices. An individual of type j takes as given: (1) the probability that a

type k individual accepts matches with her at any period, Qk,j(t), and the probability that a

type k individual is infected, Ik(t). She then chooses the type-specific matching probability

qj,k(t) to maximize the expected utility:

max
qj,k(t), sj(t), ij(t)

∫ t

0

e−rt
(
λ0

∫ 1

0

Qk,j(t)w

(
qj,k(t)

)
dk + rφjij(t)

)
dt, (1)

s.t.

ṡj(t) = −β0sj(t)λ0
∫
k

Qk,j(t)qj,k(t)Ik(t)dk

i̇j(t) = β0sj(t)λ0

∫
k

Qk,j(t)qj,k(t)Ik(t)dk − γij(t)

The object function is the discounted value of the flow utility. The flow utility has two

components. First, her meetings with type k would arrive with the exogenous rate λjλk. If

type k accepts a match with probability Qk,j and if type j accepts a match with probability

qj,k, the expected utility is Qk,jw(qj,k). The utility from matches is the sum of utilities from

all types. In addition, given her belief of own infection probability ij(t), the period return

due to infection is rφjij(t).

How she decides to match with others also affects the evolution of her belief about

infection. The inflow of infection probability is the total measure of meetings where she

is uninfected (which happens with probability sj(t)) while the others are infected (which

happens with probability Ik(t)). For any instant of time t, the probability of infection also

decreases due to the chance of recovery.

We look for an equilibrium with perfect foresight. Specifically, we require the matching

decisions qj,k(t) to be individually optimal, given the aggregate infection probability of others

and the strategy of matching with others.

Definition 2 (Perfect Foresight Equilibrium) space

A Perfect Foresight Equilibrium is a combination of individual variables {qj,k(t), sj(t), ij(t)}
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and aggregate variables {Qj,k(t), Sj(t), Ij(t)}:
1. (Individual Optimality) Given {Qj,k(t), Ij(t)}, the individual variables {qj,k(t), sj(t), ij(t)}
solve the optimization problem in equation (1);

3. (Perfect Foresight):

Qj,k(t) = qj,k(t),

Ij(t) = ij(t),

Sj(t) = sj(t).

3.1 Characterization

To characterize the optimization problem of individuals, we break the problem into two

steps: whom to match with and when to match. This characterization allows us to simplify

the problem and also offers economic insights about the interaction in equilibrium.

We start by writing out the Hamiltonian of the full problem as in equation (1):

H = max
qj,k

λ0

∫ 1

0

Qk,j(t)w

(
qj,k(t)

)
dk + rφjij(t)

− (µsj − µij)β0sj(t)λ0
∫
k

Qk,j(t)qj,k(t)Ik(t)dk − γµijij
(2)

In the appendix, we provide the formal derivation of the first order conditions. Here we

provide an alternative interpretation of the optimal conditions, to facilitate the understand-

ing of the economics. We note the Hamiltonian in equation (2) can be thought of as a two

step maximization problem: (1) conditional on β =
∫
k
λjλkQk,j(t)qj,k(t)Ik(t)dk, to choose

the optimal qj,k that maximizes the total utility from matches; and (2) choose the optimal

β(t) that maximizes the Hamiltonian. The first step will be referred to as the intratemporal

problem, and the latter step will be referred to as the intertemporal problem.

Intratemporal Problem.- We start by considering a static problem of type-specific match-

ing decisions, as in equation (2):

W (β; j, t) = maxλ0

∫ 1

0

Qk,j(t)w(qk)dk, (3)

s.t.

β = β0λ0

∫ 1

0

Qk,j(t)qkIk(t)dk.

The individual chooses the optimal probability of accepting a meeting with type k, qk,

given others’ strategy Qk,t(t) and infection risk Ik(t), as well as an target infection rate β.
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Conceptually, we ask: to maintain an infection rate of β, what is the optimal strategy of

accepting meetings?

This static problem has a strictly concave objective function and a linear constraint. As

a result, the first-order condition uniquely determines the optimal matching decisions:

w′(qk) = F−1(1− qk) = β0κIk.

The optimal matching decision equalizes the marginal utility from matching with type k

to the marginal cost of getting infected, where κ is the marginal utility from increasing the

infection rate target. This simple optimal decision rule hinges on two assumptions about

the matching process. First, there is no transfer of utilities when pairs decide whether to

form a match. Second, the disease only reproduces when both parties decide to match with

each other. We now invert the w′(q) function to obtain a closed-form solution for matching

probabilities:

qk = 1− F (β0κIk).

The optimal matching threshold depends on three factors: (1) the baseline infection probabil-

ity β0; (2) the probability of type k being infected; and (3) the marginal utility of increasing

infection target κ. Because both β0 and ik are positive, a higher κ means a higher threshold

of matches and a lower probability of matches. Hereafter, we refer to κj as the caution of

each individual: a higher caution means type j is more selective about meeting others.

The static problem in equation (3) greatly simplifies the characterization of equilibrium.

Specifically, given any β, ik, and Qj,k, we find κj as solution to the following equation, and

accordingly we find the optimal matching decision qj,k:

β = β0λ0

∫ 1

0

Qk,j(t)

(
1− F (β0κIk)

)
Ikdk.

Before proceeding to the characterization of the fully dynamic problem, we derive two

properties of W (β; j, t) functions, which would be useful in characterizing equilibrium and

its sorting pattern. First, the Lemma 1 shows that the W (β; j, t) function is a single-peaked

concave function, with Inada conditions on both β → 0 and β → β̄ ≡ β0
∫ 1

0
λjλkQk,j(t)ikdk.

Thus individuals will always choose an interior infection target in (0, β̄):

Lemma 3 (Concavity of W (β; j, t)) space

Given any equilibrium path, W (β; j, t) is concave:

κ′(β; j, t) = W ′′(β; j, t) < 0.
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Second, Lemma 2 shows that the W function has super-modularity in two pairs of vari-

ables: (1) the infection target β and other people’s acceptance probability Qk,j; and (2) the

infection target β and contact rate λj.

Lemma 4 (Super-Modularity of W (β; j, t)) space

Everything else equals, suppose λjQk,j > λj′Qk,j′ for any k, then for any β,

κ(β; j, t) > κ(β; j′, t).

Lemma 2 implies that, when others are more likely to accept matches with type j, the

marginal utility of any given β also increases, and she will be more incentivized to set a

higher target for the infection rate. A similar statement holds for a person with higher

contact rate λj. This comparative static result is the key to understanding the sorting

pattern of equilibrium. Matches are strategic complements. When there is more inflow of

possible meetings, turning others away would be more costly, because it is more likely that

the focal individual is avoiding high-value matches. This means that in the equilibrium,

individuals with a higher contact rate will set a higher infection target, so as individuals

who are more preferable match partners to others.

Intertemporal problem.- In this subsection, we write type j’s dynamic matching decision

using the static value from optimal matches W (β; j, t):

max
β(t)

∫ t

0

e−rt
(
W (β(t); j, t) + rφji(t)

)
dt, (4)

s.t.

ṡ(t) = −β(t)sj(t),

i̇(t) = β(t)sj(t)− γi(t).

Although W (β; j, t) is still an endogenous function that depends on equilibrium outcomes,

the decision of individuals is now a single variable dynamic programming problem. We

characterize the solution by writing at the current-value Hamiltonian. To simplify notation,

we omit the subscript for time and type when it is not necessary:

H(s, i) = max
β

W (β) + rφi− µsβs+ µi
(
βs− γi

)
.

The optimal decision must satisfy the first-order conditions. Specifically, the marginal utility

from increasing the infection rate must equal the marginal cost of increasing the infection

16

lemma:2
lemma:2


probability:

κ(β) = W ′(β) = (µs − µi)s. (5)

Second, the marginal value of susceptible and infection probability must be consistent with

the dynamic accounting equation at the optimum:

µ̇s = rµs + (µs − µi)β(t) (6)

µ̇i = (r + γ)µi − rφ (7)

Finally, all the marginal values and state variables need to satisfy the transversality condition:

lim
t→∞

e−rtµss = 0, lim
t→∞

e−rtµii = 0

Equation (6), together with the transversality condition, immediately imply that for any

t, the marginal value of infection probability must stay constant, µi(t) = rφ
r+γ

. Otherwise,

the accounting equation implies that the marginal value will eventually grow faster than r

in the limit.2 This result has an intuitive interpretation: an asymptomatic infection costs

exactly the discounted expected loss, because it does not shift the behaviors of individuals.

Furthermore, using the result in equation (4), we can now investigate how does caution

evolves over time:

κ̇ = (µ̇s − µ̇i)s+ κ
ṡ

s

Because for any period µ̇i = 0, the first part of the above equation must be rµss + κβ.

Because the ṡ = −βs, the second part of the above equation must be −κβ. Thus, we reach

a simple equation for caution κ̇ = rµss:

κ̇ = rκ+
r2φ

r + γ
s.

Conditional on any path of being susceptible s(t), there is a unique solution to the equation

for caution that satisfies the transversaility condition:

κ(t) = − r2φ

r + γ

∫ ∞
t

e−r(τ−t)s(τ)dτ. (8)

This closed-form solution further enforces our interpretation of κ(t) as caution. Caution in

any period t is simply the discounted probability forward from t adjusted by the discounted

2More specifically, we can solve for the closed form for limt→∞ e−rtµi(t)i(t) = C(ε+
∫∞
1
eγτs(τ)β(τ)dτ).

The only constant that makes sure this limit is zero would be C = 0, which implies µi(t) = rφ
r+γ .
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loss due to infection. So κ(t) is a measure of value at risk when an individual engages in

risky interactions. Taking the limit t→∞ we derived the limiting behavior of κj(t)

lim
t→∞

κ(t) = − r2φ

r + γ
lim
t→∞

s(t).

One interesting feature we discovered from the equation (8) is that |κ(t)| is an decreasing

function in time. We refer to this property as equilibrium fatigue. In the case of disease,

over time agents behave less cautious in their meetings and meet more often; in the case of

information, over time agents are more selective and meet less often. This comes from the

fact s(t) is an decreasing function in time. As time progresses, as long as agents are still

matching with others, they can only be less likely to stay susceptible. This makes the return

from being cautious smaller.

Equilibrium.- Having characterized of individual optimization problem, we are now ready

to characterize the full equilibrium. This only requires modifying the individual problem by

requiring their conjecture of of the action of others with the actual optimal choice of each

type. The following lemma summarizes the equation system for equilibrium outcomes.

Lemma 5 (Equilibrium Equation) space

The equilibrium is characterized by {κj, sj, ij} solving

(Caution)

κ̇j = rκj +
r2φj
r + γ

sj;

(S-I-R)

ṡj = −βjsj;

i̇j = βjsj − γij;

(Matching)

βj = β0λ0

∫
k

(
1− F (β0κkij)

)(
1− F (β0κjik)

)
ikdk;

(Transversality)

lim
t→∞

κj(t) = − r2φ

r + γ
lim
t→∞

sj(t).

The equilibrium is characterized by a three-equation linear o.d.e. system, in which the

time-varying coefficients are determined by the equilibrium matching equation. The initial

state variable is fixed. Thus, the only endogenous variable at the onset of the equilibrium

is how cautious people are, κj(0). Given any {κj(0)}, βj are fully characterized by the

matching equation, and, thus, the time drifts. This simple argument establishes that, given

any initial caution {κj(0)}, the equilibrium is uniquely determined forward.

18



Not every initial condition is consistent with the transversality condition. Looking for an

equilibrium is to solve a forward-shooting problem. We look for κj(0) such that in the limit:

lim
t→∞

κ(t) = − r2φ

r + γ
lim
t→∞

s(t).

In practice, this shooting problem can be efficiently solved with an interation algorithm.3

4 Equilibrium Sorting

In this section, we characterize the sorting pattern in the decentralized equilibrium. Analyti-

cally, we show that sorting on risks is a universal feature of any equilibrium when individuals

differ in their loss due to infection or the innate contact rate in a case where the recovery

from infection is shut down (SI model). The sorting pattern among heterogeneous individ-

uals affects aggregate transmission dynamics. When the matching network has a positive

sorting on risks, the reproduction of infection is slowed; When the matching network has a

negative sorting on risks, the reproduction of infection is accelerated. Moreover, the strength

of sorting is time-varying and depends on the aggregate prevalence of the pandemic.

Lemma 6 (Sufficient Condition for Sorting) space

If the matching probability has log-supermodularity in (xj, xk), then the equilibrium is pos-

itively sorted on x; if the matching probability has log-submodularity in (xj, xk), then the

equilibrium is negatively sorted on x.

Log-supermodularity of probability density in terms of (xj, xk) is a sufficient condition for

ranking of conditional CDFs in terms of stochastic dominance. Lemma 5 further narrow

the discussion to matching probability because the contact rates are all multiplicative to the

density. In other words: if the matching probability is a uniform distribution across (xj, xk),

then the conditional distribution is identical across all types.

The sufficient condition in Lemma 5 allows us to interpret the sorting pattern in terms

of classical matching theory. We can write out the log-matching probability in equilibrium

among any type j individual and type k pair:

log qj,kqk,j = log(1− F (β0κjik)) + log(1− F (β0κkij)),

whether the equilibrium is positively sorted or negatively sorted depends on (a) the mono-

tonicity of µj in xj, (b) the monotonicity of ik in xk, and (c) the log-concavity of the survival

3However, the uniqueness of equilibrium is harder to establish due to the strategic complementarity nature
of interaction. This is also featured in recent work by Lebeau (2020).
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function 1−F (ν). Because the matching threshold is β0κjik, an individual who has a higher

infection probability is less likely to be accepted for matches. Furthermore, due to the prod-

uct form, a more cautious individual will amplify this differential. Two complexities remain:

(1) how caution and infection probability are ranked among types and (2) how does the

matching threshold is mapped into matching probabilities.

4.1 Analytical Result: Sorting in SI Model

In this section, we state our first result for the equilibrium matching pattern: the rank of

caution and risk stays unchanged from the onset of the diffusion to the the limit.

Proposition 1 (Rank-Preserving in Infection) space

If φ1 > φ2, for any t > 0:

i1(t) > i2(t) and s1(t) < s2(t).

Proof. See Appendix.

From a static decision perspective, the result of proposition 1 is intuitive. However, given

the equilibrium interaction among individuals and infection dynamics, it is not immediately

self-validating. More specifically, a type that has a lower infection probability is more prefer-

able by others. Thus, it is more costly for them to turn away from meetings, due to the

super-modularity of the utility from matching.

Proposition 1 shows that the the equilibrium effect could not dominate the direct impact

of heterogeneity in loss and contact rate. We discuss here the economics behind the proof.

Details aside, the main argument is a revealed preference argument. First, suppose there is

a period during which the two types start with the same probability of infection and j′ ends

up with less likely to be infected. If other individuals behave optimally, they must accept

matches with type j′ with higher probability. This means the marginal utility of increasing

infection target is higher for type j′, because of the super-modularity of W (β; j, t) function.

Thus, type 2 has higher return from infection because φj′ < φj and higher marginal utility

from meeting others. Deviating from type j′’s strategy to type j’s strategy creates a strict

improvement. This is a contradiction. What we ruled out so far is any crossing where type

j′ ends up with lower infection risk. So the whole equilibrium path must leads to that type

j has higher infection probability.

Corollary 1 (Rank-Preserving in Caution) space

If 0 > φ1 > φ2, for any t > 0:

κ1(t) < κ2(t).
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Corollary 1 is an immediately result that combines two facts: (1) the equilibrium is rank

preserving in the probability of infection; and (2) caution is the discounted probability of

staying susceptible adjusted by the expected loss due to infection. Take as an example the

case of loss heterogeneity for an example. Individuals with a higher loss will have lower

probability of being infected through out the equilibrium path. Because there is no recovery

from infection, individuals with higher loss also has higher probability of staying susceptible

through out the equilibrium path. This means they must also be more cautious.

Proposition 2 (Disease: Positive Sorting) space

The equilibrium is positively sorted on infection or return, under the follow conditions:

• φj < 0

• α′(ν)ν + α(ν) > 0 for ν > 0 (e.g. exponential, logit, normal, Pareto)

To understand the results in proposition 2, consider the cross partials of log matching prob-

ability with respect to xj and xk. Because the log-probability is additive, we focus on qj,k:

∂2 log qj,k
∂xj∂xk

= −dκj
dxj

dik
dxk

(
α′(ν)ν + α(ν)

)
|x=µjik ;

The endogenous object that affects the local sorting pattern between type j and type k is
dκj
dxj

dik
dxk

: how does caution and infection probability vary? Consider the case of sorting on

infection probability. Here the local sorting pattern is solely determined by
dκj
dij

. As shown

in Section 3.1, the equilibrium in any SI environment must be rank preserving. For the

case of infectious disease, types with higher infection probability at any t > 0 must also

be less cautious about matching with others. As a result,
dκj
dij

< 0. We further restrict

attention to distributions with property α′(ν)ν + α(ν) > 0. This condition states that the

logarithm of the survival function 1 − F (ν) cannot be too concave, which is satisfied by

many familiar distributions (e.g. Exponential distribution, Normal distribution, or Logit

Distribution). Under this restriction on the preference shock, it is immediately apparent

that the equilibrium must be sorted on infection probability.

5 Efficiency

In this section, we consider the problem of a social planner whose goal is to maximize the

discounted aggregate utility.
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Setup.- The social planner chooses qj,k(t) to maximize the following problem:

max
qj,k(t)

∫ ∞
0

e−rt
{
λ0

∫
j

∫
k

qj,k(t)w(qk,j(t))dkdj +

∫
j

rφjij(t)dj

}
dt,

s.t.

ṡj(t) = −β0λ0
∫
k

qj,k(t)qk,j(t)ik(t)dksj(t),

i̇j(t) = β0λ0

∫
k

qj,k(t)qk,j(t)ik(t)dksj(t)− γij(t),

ij(0) = ε.

The social planner instructs individuals of type j to accept meetings with type k with

probability qj,k. Her objective function is the sum of the individual discounted utility from

matches and from infection. We clarify the frictions faced by the planner. First, she faces the

uncertainty about actual infection status of each individual, so has to for expectation about

the infection status of each type. In fact, the law of motion for the planner’s state variables

is identical to the ones faced by individuals in the decentralized equilibrium. Second, the

planner faces the same type of coordinating friction in each meeting. When two agents meet,

there is no communication regarding their private value of matches. We keep this assumption

in the planner’s problem.

Characterization.- We first set up the Hamiltonian of the planner’s problem. Denoting µ̂ij

and µ̂sj(t) the shadow value of the infection probability and the shadow value of susceptible

for type j for type j. The Hamiltonian of the planner’s problem is:

H({µ̂ij, µ̂sj , ij, sj}j) = max
qj,k

λ0

∫
j

∫
k

qj,kw(qk,j)dkdj +

∫
j

rφjijdj

− β0
∫
j

(µ̂sj − µ̂ij)sjλ0
∫
k

qj,kqk,jikdkdj − γ
∫
j

µ̂ijijdj

(9)

We observe two features of how the matching probabilities enters planner’s objective

function: (1) they enter symmetrically in the return function. Interchanging their roles does

not alter the objective function; (2) they enter as a product in the law of motion of infection

probabilities. This does not guarantee symmetry in the optimal allocation. Depending on

the parameterization of the preference shock, both symmetric and non-symmetric solutions

can be optimal. For instance, if the preference shock follows the Exponential distribution,

any solution with qj,kqk,j staying constant yield the same value. If the preference shock

follows an Pareto distribution with a thick tail, the optimal solution requires one side to

always accept the match and the other side to set a interior threshold.
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To characterize the planner’s optimal allocation, we first take the first-order condition

with respect to qj,k:

qk,jw
′(qj,k) + w(qk,j) = (µ̂sj − µ̂ij)sjikqk,j + (µ̂sk − µ̂ik)skijqk,j.

The optimal allocation equates the marginal values from matches to the marginal value

from diffusion. Comparing the planner’s condition to the individual’s condition in the de-

centralized equilibrium, we notic the first source of inefficiency in the equilibrium. In the

decentralized equilibrium, individuals ignore that when they increase matching probability,

they also increases the probability that their meeting partners are getting matched with.

This is correctly reflected in the social planner’s problem as w(qk,j)− (µ̂sk − µ̂ik)ijqk,j.
We define a planner counterpart of caution κ̂j = (µ̂sj − µ̂ij)sj. With this definition and

the proportionality in matching probability, the optimal condition for qj,k and qk,j implies:

w′(qj,k) +
w(qk,j)

qk,j
= w′(qk,j) +

w(qj,k)

qj,k
= κ̂jik + κ̂kij.

We then turn to the accounting equation for shadow values at the optimum:

µ̇sj = rµsj + (µsj − µij)β0λ0
∫
k

qj,kqk,jikdk

µ̇ij = (r + γ)µik − rφj + β0λ0

∫
k

qj,kqk,j(µ̂
s
k − µ̂ik)skdk.

The shadow value of susceptible probability is identical to the decentralized equilibrium.

The risk of being infected is a private loss, so is fully internalized by individuals. On the

other hand, the shadow value of infection probability has an extra time drift. This reflects

the diffusion externality caused on others. When an individual is more likely to get infected,

the chances that she passes the virus to others also increases. As a result, the social value of

infection is no longer constant. Instead, it is a time-varying object that reflects the changing

likelihood of reinfection in the economy. We again utilize the definition of κ̂j to write:

˙̂κj = rκ̂j − γµ̂iksj + rφjsj − β0λ0sj
∫
k

qj,kqk,jκ̂kdk.

Compared to the equilibrium caution as in equation (8), the caution according to plan-

ner’s allocation cannot be trivially signed. As a result, the diffusion externality can take

either positive or negative signs. The decentralized equilibrium can match too often or too

little depending on who matches with whom. We will discuss this statement in more details
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in the quantitative application.

6 Applications: COVID - 19

In this section we illustrate the insights we can learn from the framework.We consider the

on-going pandemic of COVID-19. With the equilibrium model, we show sorting within

age groups can play a vital role in reducing the reproduction number. By comparing the

equilibrium outcome to the planner’s solution, we show young groups match too little in the

decentralized equilibrium, a novel prediction from the model presented in this paper.

6.1 Calibration

We simulate the model for the case of COVID-19. There are three sets of parameters to

calibrate for our model: the preference/matching parameter and the epidemiology parameter.

Demographics.- We set the types to be six age groups: 0-18, 19-49, 50-59, 60-69, 70-79,

and above 80. The share of these six types are set to the aggregate population share in the

United states.

Preference/Matching.- We set the discount rate r to be 0.05/365, which leads to a daily

calibration. The preference shocks are parameterized by Normal distribution with type

varying mean values. We normalize the variance of the preference shock to be 1. The

average values from matchings and contacts are picked jointly in order to match the pre-

COVID matching patterns among age groups, as in the recent work by Akbarpour et al.

(2020). One salient feature of the pre-COVID matching matrix is that it already has a

substantial degree of sorting. For example, the age group of 0 to 18 are significantly more

likely to meet others with their own types. To not over attribute sorting to the endogenous

channel in this paper, we allow the preference shocks to be matching pair specific. However,

this creates an issue of identification because we do not have enough equations to pin down a

pair-specific average value. To get around this issue, we assume the average value of matches

for each types can take two possible values, one for matches within the same type and one for

matches across types. Specifically: µj,k = I{j = k}µselfj + I{j 6= k}µacrossj . Thus exogenous

homophily can be generated by a higher expected value from within-type matches. The

detailed value of contact rates and expected value of matches are detailed in Table 1:

Epidemiology Parameters. - We start the economy with a initial infection population of

5.27× 10−6. To ensure the initial growth rate of infection is the same across all age groups,

we parameterize the distribution of initial infection among different groups as the eigenvector

of pre-COVID contact matrix associated with the largest eigenvalue. The detail is included
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Table 1: Calibration: Matching Parameters

Age Group Contact Rate (Daily) Ewithin
ν Eacross

ν

≤ 18 35.69 -0.19 -1.92
19− 49 100.00 -0.83 -0.87
50− 59 42.06 -0.21 -0.21
60− 69 34.15 -0.22 -0.20
70− 79 27.18 -0.06 -0.53
≥ 80 31.66 -0.06 -0.69

Figure 2: Pre-Covid Contact Matrix: Data and Model

(a) Data: Contact Matrix - Chicago 2019 Qrt 1 (b) Model

in Table 2. From the model, the initial doubling time of a case can be approximated by the

reproduction number using the pre-COVID matrix. We target a basic reproduction number

R0 = 3.1, this result in a baseline infection probability of 9.1× 10−4.

When the model is simulated in an environment without endogenous matching decisions,

the exogenous matching rate is a normalization. Specifically, any scaled matrix that matches

the basic reproduction number would produce the same results of infections. However, the

level of contact rates matter in our model. When people meet more, we would calibrate a

small baseline infection probability β0 for a fixed R0, which would governs how much people

respond to infection probability. We thus scale the contact matrix to different values, and

compare the simulated path of equilibrium. If β0 is close to zero, this our simulation is

close to a model without endogenous choices of matching. As documented by Farboodi et

al. (2021), during the first two weeks of the pandemic, there is a large drop in activity even

without policy intervention (a 50% reduction in activity). We believe the individual choices

are playing a vital role in the unfold of COVID-19, we thus pick the scaled β0 (baseline times
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Table 2: Calibration: Epidemiology Parameter

Parameter Symbol Value Target
Termination Rate r 0.05/365 Discount Rate
Recovery γ 1/15 15-day Recovery
Initial Infection ε 5.27× 10−6

Baseline Infection Prob. β0 0.09 R0 = 3.1

Table 3: Calibration: Age-Specific Parameter

Age Group Loss (φj) Population Share
≤ 18 -6,437 0.25
19− 49 -12,171 0.40
50− 59 -46,646 0.13
60− 69 -80,193 0.12
70− 79 -214,895 0.07
≥ 80 -429,948 0.03

100) as our preferable calibration.

The loss to infection φj is interpreted as the expected loss due to death. In order to

calibrate this number, we use the value of statistical life based on Hall et al. (2020): people

are willing to forgo 31.71× r of consumption to reduce death by probability by 0.1 percent.

We thus calibrate φj to match the same reduction in utility from matches.

Results.- Figure 2 plots the time path of infection probability and susceptible probability

by age groups, from both the model in this paper and from an SIR model that takes the

pre-COVID matching matrix as given. Comparing the graph in panel (a) and panel (b) to

the graph in panel (c) and panel (d), we observe several specific features of our model.

First, the peaks of infection rate for different age groups arrive at very different period

in our model. This comes from the fact older groups suffer more loss from infection. At

earlier stage of the pandemic, they optimally choose to avoid matching with others. This

equilibrium force is missed in a conventional SIR model without endogenous response. This

pattern is also featured in recent work by Brotherhood et al. (2020). Second, even within

age groups, there can be multiple waves of infection. As the pandemic eases, older groups

gradually reduce their caution. This comes from the fatigue force and the fact many infection

cases of other groups are already recovered, and the risk of catching the virus is significantly

lowered. The endogenous response of individuals in the equilibrium significantly reduces the

peak-time infection of all groups, especially for the older groups.
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Figure 3: Infection Probability (Baseline)
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Figure 4: Infection Probability (Exogenous)
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Figure 5: Sorting Pattern

(a) COVGt(it, sk) Over Time (b) Matching Matrix: Day 120

Table 4: Decomposition of Rt

Component Rc
t RA

t RH
t

t=0 3.1 3.1 3.1
%γ (-0) (-0)
t=50 4.5 2.6 2.52
%γ (-0.43) (-0.03)
t=120 2.8 1.4 1.0
% γ (-0.5) (-0.27)
t=250 1.05 0.79 0.82
% γ (-0.23) (+0.02)

We further investigate the sorting pattern over different period of the pandemic. In Figure

5, we plot the measure of assortative matching on risk, the weighted covariance between the

infection probability and susceptible probability of matched pairs. In the case with recovery,

we still have assortative matching on risks over the whole episode of pandemic. The strength

of sorting is time-varying. At the onset of pandemic and and the end of pandemic, sorting

is zero. This result comes from the fact at both the beginning and the end of a pandemic,

all types have the same probability to pass on the virus. In panel (b), we plot the matching

matrix at day 120 of the pandemic, when the prevalence of infection is high. All agents cut

their social interactions, more so for the older groups. Older groups cut more interactions

with the young groups.

Utilizing the decomposition developed in section 2, we calculate the three reproduction

numbers at different periods of the pandemic. At t = 0, there is no sorting. Thus, Rc
t = RA

t =
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RH
t . As the virus becomes more prevalent, individuals start to reduce their interactions,

which is reflected on a reduction from Rc
t to RA

t . During the early periods, sorting plays a very

small role of preventing transmission of virus, because different age groups are very similar

in their relative infection probability. However, around the peak of the pandemic (t = 120),

sorting plays a sizable role. The homophily index reduces the effective reproduction number

by 27%.

6.2 Efficiency: Lock-down or Open-up?

We now compare the decentralized equilibrium outcomes to the social planner’s solution. As

noted in section 5, there are two sources of inefficiency in this economy. One comes from

the local increasing return to scale of matches, and another due to the diffusion externality.

The novel and more interesting inefficiency is the diffusion externality. In order to highlight

this inefficiency, we suppose the planner can use tools to motivate individuals in meetings

such that their matching decisions reflect the increasing return-to-scale. We refer to this

allocation as equilibrium in this section.

Figure 6 plots the time paths of infection probability within each age group, for both the

equilibrium outcome and the planner’s solution. We note several features of their disparities.

First, the discrepancy between these two allocations depends on age groups. For the younger

groups (age less than 59), the planner allocates a higher and faster infection probability for all

groups. For older groups (age more than 60), the planner chooses a lower infection probability

in the first wave, and faster second waves. Second, peak of the infection arrives faster in

planner’s allocation than in the equilibrium allocation for all groups. Figure 8 furthers shows

how would the planner creates such different pattern. The most striking feature is that the

planner chooses to increase interactions among young groups at the onset of the pandemic.

Put in another words, it is socially beneficial for young individuals to meet more an spread

the virus faster. This increasing in activity is associated with a stronger reduction in the

interaction between old and young groups. Put in another word: with sorting, the society

could pass the peak faster by increasing interactions. This type of allocation can never be

achieved in decentralized equilibrium. As we showed in earlier sections, the private caution

is always positive, meaning individuals reduce their activities with everyone else, regardless

of their ages.

Why would the planner wants to increase young groups’ activity during a pandemic?

To understand this, we compare three types of meetings: young-young meetings, old-old

meetings, and young-old meetings. The planner wants to protect the old more from infection

because they suffer more from infection. The most risky meeting type is the young-old when
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Figure 6: Comparison between Planner and Equilibrium Allocation
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Figure 7: Comparison between Planner and Equilibrium Allocation

the old population are still largely susceptible and the young population is largely infected.

The planner can reduce these types of meetings in two ways: either to reduce these meetings

all along or make sure young population are already recovered when the meetings between

32



young and old resume. The first method requires a long period of restriction in activity,

while the second requires a shorter period of reduction. Given the distribution of preference

in our calibration, it is more worthwhile for the young to increase activity, to get infected

and recover faster, and shorten the period of reduction in activity.

Sorting is important for the planner’s choice of increasing meeting probabilities among

the young population. During the period where she instructs young population to interact

more with each other, she also reduces the meeting probabilities between young group and

old group to a very low level. In reality, this policy might not be feasible. For example, some

interactions between young and old are impossible to avoid, such as nursing homes. In order

to illustrates this logic and tests the robustness of our findings, we impose a lower bound on

interactions among types. More specifically, we assume α fraction of meetings must result

in a match. Taking the nursing home example, assume α fraction of old population needs

to live with the help of young workers. They draw a utility shock of positive infinity from

interactions. In our next numerical simulation, we focus on the social planner’s choice of

match probabilities as a function of α.

Figure 8: Robustness with Different α

As shown in Figure 8, when more meetings between young and old group are unavoidable,

the gap between planner’s solution and the equilibrium allocation are smaller. However, the

planner still wants to increase meetings within group 2 with even a very high share of
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unavoidable meetings (α = 0.9). This comes from the fact (1) young groups take a large

population share and tend to meet with each other and (2) old group takes a very minimum

share of meetings among young cohort. This result would change if these patterns are

different. We believe a small share of unavoidable meetings between young and old cohorts

fit the reality better4.

7 Conclusion

How heterogeneous individuals interact with each other is an important determinant of

diffusion process. We provide a theory of endogenous formation of these matching patterns,

and characterize its time variation. Through both analytical results and numeric simulation,

we highlight the endogenous sorting pattern that emerges in equilibrium, and its role in

accelerating or slowing down the diffusion of infectious disease or valuable information. We

show the optimal intervention can either increase or decrease activity during a pandemic,

depending on the heterogeneity among types and how they interact with each others.

4In the U.S., only 8.5 percent of old population lives in a nursing home.
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8 Appendix

8.1 Details of Exogenous Matching Case

In the exogenous matching case, we define:

z(λ, t) = β

∫ t

0

∫
λ′
m(λ, λ′)i(λ′, τ)dG(λ′)dτ

Taking the time derivative:

ż(λ, t) = β

∫
λ′
m(λ, λ′)i(λ′, τ)dG(λ′)

Utilizing the fact recovery, susceptible and infected probability add up to 1:

ż(λ, t) = β

∫
λ′
m(λ, λ′)

(
1− s(λ′, t)− r(λ′, t)

)
dG(λ′)

Further: ∫
λ′
m(λ, λ′)dG(λ′) = λ∫

λ′
m(λ, λ′)s(λ′, t)dλ′ =

∫
λ′
m(λ, λ′)(1− ελ′)e−z(λ

′,t)dG(λ′)∫
λ′
m(λ, λ′)r(λ′, t)dG(λ′) = γz(j, t)

so we get:

ż(j, t) = βλ− β
∫
λ′
m(λ, λ′)(1− ελ′)e−z(λ

′,t)dG(λ′)− γz(j, t)

8.2 A parametric case

Suppose

m(λ, λ′) = λλ′m(λ′|λ)

G(λ) = 1− e−αλ

And the meetings are generated by the Farlie-Gumbel-Morgenstern Copula:

C(u, v) = uv + θu(1− u)v(1− v)
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8.3 Formal Derivation of Optimal Conditions

We first write out the Hamiltonian of individuals of type j:

H = max
qj,k

∫ 1

0

λjλkQk,j(t)w

(
qj,k(t)

)
dk + rφjij(t)

− (µsj − µij)β0sj(t)
∫
k

λjλkQk,j(t)qj,k(t)Ik(t)dk − γµijij
(10)

We take the first-order condition and simplifies:

(Optimal)

qj,k = 1− F (β0(µ
s
j − µij)sjIk)

(Accounting)

µ̇s = rµs + β0sj(t)(µ
s
j − µij)

∫
k

λjλkQk,j(t)qj,k(t)Ik(t)dk

µ̇i = (r + γ)µs − rφj

(Transversality)

lim
t→∞

e−rtµsj(t) = 0

lim
t→∞

e−rtµij(t) = 0

We define two terms:

(Caution)

κj(t) = sj(t)(µ
s
j − µij)

βj(t) = β0(µ
s
j − µij)

∫
k

λjλkQk,j(t)qj,k(t)Ik(t)dk

Combining these two definitions and the optimal condition we reach exactly the same equa-

tion systems as in Lemma 3.

8.4 Proof of Proposition 1

Case 1: λ1 = λ2 while 0 > φ1 > φ2.

Suppose we find a interval of time [t1, t2] during which:

i1(t) ≤ i2(t)

The rational decision of other individuals implies that for any t ∈ [t1, t2]

Qj,1(t) ≥ Qj,2(t)
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For type 1 and type 2 to start with the same infection probability yet end up with i1 ≤ i2,

there must be a sub periods during which:

β2(t) > β1(t).

Call the collection of the these sub periods T1. We want to show this type of interval must

not exist if both types are behaving optimally.

Step a. Consider the following deviation:

β̃(t) = min{β2(t), β1(t)}.

For type 2 to not want to deviate to β̃, it must be:∫
T1

e−rtW (β2; 2, t)dt+ rφ2

∫ ∞
0

e−rti2(t)dt ≥
∫
T1

e−rtW (β1; 2, t)dt+ rφ2

∫ ∞
0

e−rtĩ2(t)dt,

where ĩ2 is the path of infection probability for type 2 if she uses β̃ strategy.

Step b. Consider the following deviation

β̂(t) = max{β2(t), β1(t)}

For type 1 to not want to deviate to β̂, it must be:∫
T1

e−rtW (β2; 1, t)dt+ rφ1

∫ ∞
0

e−rtî1(t)dt ≤
∫
T1

e−rtW (β1; 1, t)dt+ rφ1

∫ ∞
0

e−rti1(t)dt,

Step c. we show this creates a contradiction.

Due to super-modularity of W :∫
T1

e−rt
(
W (β2; 2, t)−W (β1; 2, t)

)
dt ≤

∫
T1

e−rt
(
W (β2; 1, t)−W (β1; 1, t)

)
dt

Because ĩ2 < i2:

rφ2

∫ ∞
0

e−rt(i2 − ĩ2)dt < rφ1

∫ ∞
0

e−rt(i2 − ĩ2)dt = rφ1

∫ ∞
0

e−rt(s̃(t)− s2(t))dt

We want to show: ∫ ∞
0

e−rt(s̃(t)− s2(t))dt >
∫ ∞
0

e−rt(s1(t)− ŝ(t))dt
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To show this, we first note:

log(s̃(t))− log(s2(t)) =

∫
T1∩[0,t]

(β1(τ)− β2(τ))dτ = log(s1(t))− log(ŝ(t)) > 0

Then we note:

log s1(t) = log ε−
∫ t

0

β1(τ)dτ < log ε−
∫ t

0

˜beta(τ)dτ = log s̃(t)

Because eh is convex and log s1(t) < log ŝ(t) so:

s̃(t)− s2(t) > s1(t)− ŝ(t)

As a result: ∫ ∞
0

e−rt(s̃(t)− s2(t))dt >
∫ ∞
0

e−rt(s1(t)− ŝ(t))dt

Because φ1 < 0:

rφ1

∫ ∞
0

e−rt(s̃(t)− s2(t))dt < rφ1

∫ ∞
0

e−rt(s1(t)− ŝ(t))dt

This means if:∫
T1

e−rtW (β2; 2, t)dt+ rφ2

∫ ∞
0

i2(t)dt ≥
∫
T1

e−rtW (β1; 2, t)dt+ rφ2

∫ ∞
0

ĩ2(t)dt,

then ∫
T1

e−rtW (β2; 1, t)dt+ rφ1

∫ ∞
0

î1(t)dt >

∫
T1

e−rtW (β1; 1, t)dt+ rφ1

∫ ∞
0

i1(t)dt,

A contradiction! For i1(t) < i2(t), there must be periods like T1. Non-existence of T1 rules

out any interval of time with i1(t) < i2(t).

Case 2: λ1 > λ2 while 0 > φ1 = φ2.

This case can be proved using the same method as Case 1.

Case 3: λ1 = λ2 while φ1 > φ2 > 0.

Take any crossing point where i1(T ) = i2(T ). We want to show:

κ1(T ) < κ2(T ).
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Suppose it is the opposite. Using the κ̇j equation we get:

κ̇1(T )− κ̇2(T ) = r(κ1(T )− κ2(T )) +
r2(φ1 − φ2)

r + γ
s1(T ) > 0

We can find a small neighborhood of (T, T + t) such that:

s1 > s2, κ1 > κ2

For any of these instant of time

κ̇1−κ̇2 = r(κ1(T )−κ2(T ))+
r2φ1

r + γ
s1(T )− r2φ2

r + γ
s2(T ) > r(κ1(T )−κ2(T ))+

r2φ2

r + γ
s1(T )− r2φ2

r + γ
s2(T ) > 0

Also at this small neighborhood, i1 < i2. Type 2 is more likely to have matches because

they are more likely to be informed. This leads to:

i̇1 < i̇2

This argument can goes on forever until the transversality condition is violated. This rules

out any crossing of probability such that:

κ1(T ) ≥ κ2(T )

This means at any crossing point of p1 and p2, type 1 must accept more matches than type

2 and ends up with higher probability of infection. This leads to a unique crossing, from

t = 0. Thus we have shown:

i1(t) ≥ i2(t).

Case 4: λ1 > λ2 while φ1 = φ2 > 0.

This case can be proved in exactly the same method as in Case 3.

8.5 Proof of Corollary 1

From proposition 1, we show the equilibrium must be rank preserving in terms if infection

probability. As a result it must also be rank preserving in terms of susceptible probability.

According to the solution of κj(t) as a function of sj(t):

κj(t) = − r2φj
r + γ

∫ ∞
t

e−r(τ−t)sj(τ)dτ
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Case 1: λ1 = λ2 while 0 > φ1 > φ2.

In this case we showed:

s1(t) < s2(t)

Thus:

κ1(t) = − r2φ1

r + γ

∫ ∞
t

e−r(τ−t)s1(τ)dτ < − r2φ2

r + γ

∫ ∞
t

e−r(τ−t)s1(τ)dτ < − r2φ2

r + γ

∫ ∞
t

e−r(τ−t)s2(τ)dτ = κ2(t)

Case 2: λ1 > λ2 while 0 > φ1 = φ2 = φ.

In this case we showed:

s1(t) < s2(t)

Thus:

κ1(t) = − r2φ

r + γ

∫ ∞
t

e−r(τ−t)s1(τ)dτ < − r2φ

r + γ

∫ ∞
t

e−r(τ−t)s2(τ)dτ = κ2(t)

Case 3: λ1 > λ2 while 0 < φ1 = φ2 = φ.

In this case we showed:

s1(t) < s2(t)

Thus:

κ1(t) = − r2φ

r + γ

∫ ∞
t

e−r(τ−t)s1(τ)dτ > − r2φ

r + γ

∫ ∞
t

e−r(τ−t)s2(τ)dτ = κ2(t)

8.6 Discussion of Symmetry in Planner’s Solution

Consider the following problem:

max
q1,q2

q1w(q2) + q2w(q1)

s.t.

q1q2 = Q

We can re-write as a unconstrained problem

max
q

qw(
Q

q
) +

Q

q
w(q)

The second order derivative reads:

Q

q2

(
2(
w(q)

q
− w′(q)) + qw′′(q) +

Q

q
w′′(

Q

q
)

)
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Evaluate this at the symmetric point q =
√
Q

D = 2

(
w(q)

q
− w′(q) + qw′′(q))

)
Using the definition of w(q)

w(q)

q
− w′(q) = E[ν − z|ν ≥ z]

qw′′(q) = −1− F (z)

f(z)

As a second order test, we ask if D < 0 at the symmetry point:

D = E[ν − z|ν ≥ z]− 1− F (z)

f(z)

For Exponential: E[ν − z|ν ≥ z] = 1
λ

= 1−F (z)
f(z)

, so D = 0.

For Pareto: E[ν − z|ν ≥ z] =∞ > 1−F (z)
f(z)

, so D > 0.

For Normal: E[ν − z|ν ≥ z] = E[ν]− z + f(z)
1−F (z)

?1−F (z)
f(z)

.
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