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Abstract

We study matching between heterogeneous agents when their types are private in-
formation. Competing platforms post terms-of-trade. Agents with private information
choose where to search and form matches. Positively assortative matching arises when
high types are more likely to match with high types. We characterize an equilibrium
with positively assortative matching when one exists, and provide sufficient conditions
to ensure that matching is positively assortative in a limit with a vanishing cost for
platforms. When more desirable partners have a higher willingness-to-pay for matches,
they pay high fees to platforms to avoid less desirable types. When more desirable part-
ners have a lower willingness-to-pay, they match at a low rate to keep out less desirable
types.
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1 Introduction

Matching complementarities generate positively assortative matching, while substitutability

generates negatively assortative matching (Koopmans and Beckmann, 1957; Becker, 1973).

This conclusion holds in an environment where individual characteristics are common knowl-

edge, so in particular everyone knows whom they are matching with when they match. This

paper examines who matches with whom when individuals are privately informed about

their own characteristics, and those characteristics affect the value an individual gets from

matching and the value a partner gets from matching with them.

To have sorting in an environment where characteristics are completely hidden, there

must be a mechanism for getting individuals with different types to separate themselves.

The mechanism we explore is their choice of terms-of-trade by competing platforms, where

a platform’s terms-of-trade is defined as a combination of an access fee and a composition

of other individuals in the platform. Individuals self-select into different platforms because

they have different preferences over access fees and composition.

Importantly, we assume that there are three inputs into matching First, there are two

types of agents who perform different roles in a match. They each search on a designated

side of each platform. The platform may charge a different fee for accessing each side. As a

result, the composition of individuals on each side of the platform may differ. Second, there is

another kind of actor, homogeneous competitive platforms, which facilitate matching through

costly postings to platforms. Free entry pins down the number of postings, and postings are

only made at the most profitable terms-of-trade. When a platform matches a posting with

a random, independently selected, and privately-informed individual from each side, the

individuals pay the stated fees and then collect any benefit from matching.

This structure is rich enough to allow for both positive and negative sorting between

the privately-informed individuals. Positive sorting arises if agents of higher types are more

likely to match with partners of higher types. Negative sorting arises if higher-type agents

are more likely to match with partners of lower types. Platform postings play an essential

role in this analysis because they permit independent variation and ease of matching on both

sides of the platform. For example, it may be easier to match on either side of one platform

than on another. We find that this possibility is critical for positive sorting.

We motivate our model with a couple of examples. The first is a model of partnership,

as in the labor or marriage market. Individuals are privately informed about their own

characteristics, something that cannot be observed by platforms (e.g. job search or dating

apps) or potential partners until after a partnership is formed. A critical object is the payoff

that an individual with hidden characteristic i gets from matching with someone with hidden
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characteristic j, before paying any fee to the platform. We call this the payoff function ui,j

and assume it captures everything that happens after i and j match and possibly learn each

others’ type. In the partnership model, it may be natural to assume that u increases in each of

its arguments and is supermodular, so the cross-partial derivative is positive. The assumption

that u increases in its first argument means higher types have a higher willingness-to-pay

for any partner. The assumption that it increases in its second argument indicates that

everyone agrees that higher types are more desirable partners. And supermodularity implies

that higher types have a higher willingness-to-pay for partners.

In this example, we find that if there is positively assortative matching, higher types

match at a higher rate, pay higher fees, and get higher utility from matching. In a limit

where the cost of postings vanishes, separation occurs exclusively through differences in fees

paid to the platform, with everyone matching at the same rate. In that limit, we also provide

a sufficient condition for positively assortative matching.

A second example is one of disease transmission, such as HIV. Individuals are privately

informed about their probability of being infected, again something that cannot be observed

by platforms or potential partners, and prefer to match with healthier partners. More pre-

cisely, if the type is the probability of being healthy, then the value of a match increases in

the partner’s health status but decreases in one’s own health status, since healthier people

face a higher risk of becoming sick in any match. Finally, the payoff function is still super-

modular, so a healthier person gains more from a given improvement in partner health than

a sick person.

In this case, we find that if there is positively assortative matching, higher (healthier)

types match at a lower rate, pay lower fees, and get less utility from matching, the opposite

of the results in the partnership model. In a limit where the cost of postings vanishes,

separation occurs exclusively through different matching rates, with all fees converging to

zero. That is, healthy people distance themselves from the market by reducing the number

of partners rather than trying to screen out undesirable partners through fees. Again, we

provide a sufficient condition for positively assortative matching in this environment.

Our model is an extension of the competitive search equilibrium framework to an en-

vironment with two-sided private information. We build on Guerrieri, Shimer and Wright

(2010) and Guerrieri and Shimer (2014), who analyzed competitive search equilibrium with

one-sided private information. Our notion of competitive search equilibrium draws heavily

on that earlier research. A key novelty in the present environment is that privately informed

individuals care about who they match with, and their partner also has private information.

A terms-of-trade is defined by a pair of transfers from successfully matched agents on

each side to the platform and a recommendation about which types of agents should show
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up on each side of the platform. Privately-informed agents direct their search to a particular

side of a particular platform, and platforms make postings with the most profitable terms-

of-trade. A constant return to scale matching function with these three inputs then delivers

the number of matches between two agents and a platform. Through variation in the ratios

of the three arguments of the matching function, we obtain independent variation in the

ease of matching for the privately informed individuals on both sides of the platform. In

equilibrium, the ease of matching on each side of a platform is determined endogenously,

and platforms’ recommendations about what types of individuals show up on each side of

the platform must be fulfilled in any active platform.

In a competitive search equilibrium, platforms and privately-informed individuals have

rational beliefs about the ease of matching on each side of each platform. They assume that

their own behavior does not affect this. They then go to the platform and the side of the

platform that delivers the highest expected utility. In turn, the recommendation about who

is on each side of a platform and the belief about how hard it is to match on that side are

consistent with individuals behaving rationally in their choice of platforms.

As is common in the competitive search literature, we prove that a competitive search

equilibrium can be characterized through the solution to an optimization problem. However,

unlike the existing literature, we find that without further assumptions, the equilibrium may

have pooling, meaning that more than one type of individual comes to one side of active

terms-of-trade. We obtain separation under two assumptions. First, we assume all types

have a common ranking over partners, so the payoff function ui,j is increasing in j for all i.

Second, we assume that higher types gain more from an increase in their partner’s type, so

the payoff function is supermodular in i and j. These assumptions also imply that incentive

constraints can only bind downwards, so equilibrium is constrained only by the need to keep

lower types out of the platform.

Prior research has explored sorting in competitive search equilibrium with observable

types. Shi (2001) characterizes efficient sorting patterns and shows how they can be decen-

tralized through a competitive search equilibrium. Heterogeneous firms post wages and skill

requirements, and workers apply for the job, yielding the highest expected utility. Eeckhout

and Kircher (2010) shows that negatively assortative matching can arise when there are

matching complementarities, and find sufficient conditions for positively assortative match-

ing in this environment.

Our main innovation relative to these papers is the introduction of private information,

which means (in the language of Shi (2001)) that firms cannot post skill requirements but

instead must accept the mix of workers who apply for the job. Additionally, we assume that

both sides of the match care about their partner’s type. In Shi (2001), workers only care
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about wages, not the type of firm they work for. In Eeckhout and Kircher (2010), sellers

only care about the price they get, not who buys the object for sale.

There are also papers exploring sorting with information frictions. Hoppe, Moldovanu

and Sela (2009) characterize assortative matching with private information. They assume

that agents send costly signals and that matching is assortative in signals. Thus, there is

positively assortative matching if higher types send higher signals. A single-crossing property

ensures that this happens in equilibrium. Damiano and Li (2007) and Hoppe, Moldovanu

and Ozdenoren (2011) characterize the screening of privately-informed types in a matching

environment by a monopoly platform. Cai, Gautier and Wolthoff (2025) study sorting when

workers are privately informed about their ability and heterogeneous firms screen them

through interviews. We make three innovations relative to this literature. First, we allow

for endogenous matching rates, so screening works both through platform fees and through

contact rates. We show separation and screening can happen through either margin. Second,

we consider a competitive search equilibrium, where platforms face competition from other

platforms. This leads to different predictions regarding the separation of types into different

markets. Lastly, we allow for more general payoff functions, showing that the characterization

of equilibrium—whether separation works through platform fees or contact rates—depends

critically on whether more desirable types have a higher or lower willingness-to-pay.

In Section 2, we develop a general framework for analyzing sorting in competitive search

equilibrium when types are private information. Section 3 introduces some motivating eco-

nomic examples to illustrate the usefulness of our framework. Section 4 analyzes equilibrium,

including finding sufficient conditions for positively assortative matching. Section 5 focuses

on the continuous-type case with symmetric agents on the two sides of the market, where

we discuss sufficient conditions for positively assortative matching. Section 6 provides an

algorithm to compute equilibrium when the two sides of the market are asymmetric or when

there is negatively assortative matching. For comparison with the literature, we briefly

discuss the necessity for endogenous posting by platforms and the conditions that lead to

assortative matching when types are observable in Section 7.

2 Model

2.1 Platforms and Agents

We consider a static model of a two-sided market with three sets of risk-neutral participants:

a-side agents, b-side agents, and platforms.

There exists a fixed measure Is of s-side agents, s ∈ {a, b}. Each agent has private
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information about their type i ∈ Is, a compact subset of the unit interval. The distribution of

types on side s is governed by an exogenous cumulative distribution function F s : Is → [0, 1].

When an s-side agent of type i matches with a type-j agent from the opposite side of

the market, i receives a payoff us(i, j) before paying any platform fees. We impose a key

assumption on these preferences:

Assumption 1 (Common Ranking) For every i, s and j > j′, us(i, j) > us(i, j′).

This assumption requires that all agents on a given side agree on the ranking of potential

partners from the other side. That is, if any type i prefers to match with j rather than j′,

then all other types i′ share this preference. Given this commonality in preferences, we adopt

the convention of labeling types such that a higher index indicates a partner who gives a

higher payoff. Thus, j > j′ if and only if all agents prefer j to j′. Finally, we assume that

us is continuous in its first argument.

There is also a fixed measure 1 of homogeneous platforms, each of which chooses its

advertising effort at constant unit cost c ≥ 0. This advertising effort facilitates matching

between agents on the two sides of the market, with costs covered through endogenous fees

paid by the agents.

2.2 Terms-of-trade and Payoffs

A terms-of-trade τ = (ϕs, Gs)s=a,b specifies four objects: the fees ϕa and ϕb charged to

matched agents on each side and the distributions Ga and Gb of agent types participating

on each side. We allow either ϕa or ϕb to be negative but assume ϕa+ϕb ≥ 0. We denote by

T the set of feasible terms-of-trade, consisting of all tuples where ϕa and ϕb are real numbers

with nonnegative sum, and Ga and Gb are probability distributions with support on subsets

of Ia and Ib, respectively.

Agents direct their search toward particular terms-of-trade τ . If an s-side type-i agent

succeeds in trading at terms-of-trade τ ∈ T with probability λs ∈ [0, 1], their payoff is

U s(i, τ, λs) ≡ λs

(∫
I−s

us(i, j)dG−s(j)− ϕs

)
. (1)

That is, with probability λs the agent trades, receiving an expected gross payoff equal to

their expected utility us(i, j) across potential trading partners drawn from distribution G−s,

less the platform fee ϕs.

Platforms facilitate these trades. For a platform advertising terms-of-trade τ ∈ T with

associated matching probabilities λs, the expected gross profit per unit of advertising effort
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is

V (τ, λa, λb) ≡ m(λa, λb)(ϕa + ϕb) (2)

where m(λa, λb) denotes the platform’s matching probability as a function of the agents’

matching probability, discussed in the next subsection. Each unit of advertising effort at

terms-of-trade τ results in matches with probabilitym(λa, λb), generating fee revenue ϕa+ϕb.

The platform’s net profit subtracts the marginal advertising cost c from this gross profit.

2.3 Matching Function and Platform Matching Probability

To understand the platform matching probability m, we start with a more familiar object,

the matching function M . We assume that in each market, the number of matches is a

constant returns to scale function of the platform’s advertising effort, the number of a-side

agents, and the number of b side agents. Let α denote the advertising effort and ns ≥ 0

denote the number of s-side agents per unit of advertising effort at some terms-of-trade τ .

Then the number of matches is αM(na, nb), where M : R2
+ → [0, 1]. Consistent with the

constant returns to scale assumption, we assume that M is increasing, differentiable, and

strictly concave in (na, nb), with M(na, nb) ≤ min{na, nb}.
Agents’ matching probability is related to the matching function via

λs = Ls(na, nb) ≡ M(na, nb)

ns
≤ 1. (3)

for s = a, b and ns > 0. This is well-defined when na and nb are both strictly positive and

we handle the cases where na and/or nb converge to either zero or infinity through some

limits. The numerator is the matching probability per unit of advertising effort, while the

denominator is s-side agents per unit of advertising effort, and so the ratio is matching

probability per s-side agent. Using this, we can express the platform matching probability

via the identity

m(La(na, nb), Lb(na, nb)) ≡ M(na, nb).

This is the probability that the platform matches as a function of the agents’ matching

probabilities, rather than as a function of the agent-advertising ratios. It is this object that

we use in equation (2).

By varying na and nb, we trace out a set of feasible agent matching probabilities:

Λ ≡ {(La(na, nb), Lb(na, nb))|na, nb ≥ 0} ⊂ [0, 1].

The platform matching probability is a function m : Λ → [0, 1]. From the assumptions on
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the matching function, we get that Λ is a down set: if (λa, λb) ∈ Λ, then (λ̂a, λ̂b) ∈ Λ for all

λ̂a ∈ [0, λa] and λ̂b ∈ [0, λb].

We can also go back from the platform matching probability to the matching function

by first finding the number of s-side agents per unit of advertising effort:

ns = N s(λa, λb) ≡ m(λa, λb)

λs
, (4)

and then recovering the matching function via the identity

M(Na(λa, λb), N b(λa, λb)) = m(λa, λb).

Parametric Example. A parametric example illustrates these properties and clarifies the

domain restriction in Λ. Suppose the number of matches per unit of advertising as a function

of the number of s-side agents per unit of advertising follows a CES form:

M(na, nb) = (1 + (na)−γ + (nb)−γ)−
1
γ , (5)

where γ > 0. This matching function is continuous, increasing, strictly concave, and satisfies

M(na, nb) ≤ min{na, nb} for all (na, nb) ∈ R2
+.

To express this in terms of matching probabilities, we first write equation (3) as

λs = Ls(na, nb) =

(
1 + (na)−γ + (nb)−γ

(ns)−γ

)− 1
γ

.

Inverting this gives us

ns = N s(λa, λb) =

(
1− (λa)γ − (λb)γ

(λs)γ

) 1
γ

,

a version of equation (4). Substituting back into equation (5) gives

m(λa, λb) = (1− (λa)γ − (λb)γ)
1
γ . (6)

We can equally go from the platform matching probability (6) back to the matching func-

tion (5).

By varying (na, nb) across their support, we find that the feasible domain for matching

probabilities is

Λ = {(λa, λb)|(λa, λb) ≥ 0 and (λa)γ + (λb)γ ≤ 1}.

7



This example satisfies all our assumptions: the matching probabilities have a bounded do-

main Λ that is down set, and the matching function M is increasing, differentiable, and

strictly concave.1

2.4 Equilibrium

Our equilibrium concept builds on the competitive search literature pioneered by Moen

(1997) and extended to environments with private information by Guerrieri, Shimer and

Wright (2010). In these models, market-makers post terms-of-trade, and agents on both

sides of the market direct their search toward their preferred terms. The resulting equilibrium

combines price posting with rational expectations about matching probabilities.

The key innovation of the competitive search approach, relative to random search models,

is that it allows market participants to use posted terms-of-trade to solve selection and

incentive problems. As in Moen (1997), platforms in our setting act as market-makers

who compete to attract agents. However, our setting differs in two important ways. First,

following Guerrieri, Shimer and Wright (2010), we allow for private information about agent

types. Second, platforms must simultaneously attract agents from both sides of the market,

making this a two-sided matching problem with private information.

We break the definition of equilibrium into two parts. First, we define a partial equilib-

rium where everyone takes as given the agents’ market utility Ū s(i), the utility that a type-i

agent on side s can obtain at their best possible terms-of-trade. The partial equilibrium con-

cept requires that platforms cannot profitably deviate by offering a different terms-of-trade,

taking these market utilities as given.

In the second step, we impose market clearing conditions that endogenously determine

these market utilities. The market clearing conditions ensure that the total measure of each

type choosing to trade equals the available supply of that type and that platforms earn zero

profits.

More formally, we begin with the partial equilibrium definition:

Definition 1 A partial equilibrium {T p, T, (Λs, Ū s)s=a,b} is two sets T ⊆ T p ⊆ T as well

as functions Λs : T p → Λ and Ū s : Is → R+ such that:

1. (Optimal Search) For all τ = (ϕs, Gs)s=a,b ∈ T p and s ∈ a, b,

(a) Ū s(i) ≥ U s(i, τ,Λs(τ)) for all i ∈ Is;

1We obtain points where λs = 0 < λ−s as by taking the limit as ns → ∞ for fixed n−s. Points
with λa = λb = 0 correspond to the limit as na and nb both grow without bound. We get points with
(λa)γ + (λb)γ = 1 by taking the limit as na and nb converge to zero with a fixed ratio.
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(b)
∫

Is Ū
s(i)dGs(i) =

∫
Is U

s(i, τ,Λs(τ))dGs(i);

2. (Impossible Terms-of-Trade) For all τ = (ϕs, Gs)s=a,b /∈ T p, there is no (λa, λb) ∈ Λ

such that

(a) Ū s(i) ≥ U s(i, τ, λs) for all s ∈ {a, b} and i ∈ Is; and

(b)
∫

Is Ū
s(i)dGs(i) =

∫
Is U

s(i, τ, λs)dGs(i) for all s ∈ {a, b};

3. (Profit Maximization) T = argmaxτ∈T p V (τ,Λa(τ),Λb(τ)).

Let us first understand why the conditions in part 1 (Optimal Search) capture reasonable

restrictions on behavior. Consider condition 1(a), which requires Ū s(i) ≥ U s(i, τ,Λs(τ)) for

all agent types. Suppose this inequality were violated for some side s, type-i agent. Then

these agents would strictly prefer this terms-of-trade to their market utility Ū s(i), causing

them to flock to this terms-of-trade. This influx would naturally drive down the matching

probability Λs(τ) until the inequality is restored. Just as in traditional competitive search

models, entry continues until agents are indifferent between this terms-of-trade and their

market utility. Thus, any equilibrium must satisfy condition 1(a).

Condition 1(b) requires that agents who are supposed to come to the terms-of-trade

(those in the support of Gs) obtain exactly their market utility on average. To see why this

is necessary, suppose the average utility were strictly less than Ū s(i) for types in the support

of Gs. Then these agents would prefer to search elsewhere, making it impossible to sustain

the promised type distribution Gs. Conversely, if the average utility were strictly greater

than Ū s(i), this would violate condition 1(a) for some types. Thus, 1(b) is required for the

promised type distribution to be consistent with agents’ directed search incentives.

The second component of the definition identifies terms-of-trade that are impossible given

market utilities. For instance, a platform might post fees so high that no agent would be

willing to pay them regardless of the matching probabilities. Alternatively, the promised

type distribution Gs might be inconsistent with agents’ incentives, for example, promising

only high types will participate when in fact only low types would be willing to do so. The

impossible terms-of-trade condition formalizes this by requiring that for any τ /∈ T p, there

exist no feasible matching probabilities, (λa, λb) ∈ Λ that could make these terms-of-trade

satisfy condition 1.

The third component determines which possible terms-of-trade are actually offered in

equilibrium. Given the matching probabilities Λs(τ) for each possible terms-of-trade, plat-

forms choose terms-of-trade T ⊆ T p that maximize their profit per unit of advertising. This

optimization reflects platforms’ optimal behavior given agents’ responses encoded in the

matching probabilities.
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This definition extends the competitive search framework to accommodate two-sided

matching with private information. The matching probabilities Λs(τ) play a role analogous to

market tightness in traditional competitive search models, but now must simultaneously clear

both sides of the market while respecting agents’ incentives. The partition into possible and

impossible terms-of-trade provides a tractable way to incorporate these incentive constraints

into the equilibrium concept.

A partial equilibrium determines which terms-of-trade could emerge given fixed mar-

ket utilities Ū s(i). A competitive search equilibrium (CSE) endogenously determines these

market utilities through free entry of platforms and market clearing.

Definition 2 A competitive search equilibrium is a partial equilibrium {T p, T, (Λs, Ū s)s=a,b}
and a measure µ on the set of profit-maximizing terms-of-trade T such that:

1. (Free Entry) c = V (τ,Λa(τ),Λb(τ)) for all τ ∈ T ;

2. (Market Clearing) ∀s ∈ {a, b} and I ⊂ Is,∫
I

dF s(i)Is ≥
∫
T

∫
I

N s(Λa(τ),Λb(τ))dGs(i)dµ(τ)

with equality if Ū s(i) > 0 for all i ∈ I.

3. (Market Utility) For all s ∈ {a, b} and i ∈ Is with Ū s(i) > 0, Ū s(i) = maxτ∈T U s(i, τ,Λs(τ)).

Let us examine each component of this definition. First, we introduce a measure µ over

the set of profit-maximizing terms-of-trade T . This measure captures both the intensive

margin (how much advertising there is at each terms-of-trade) and extensive margin (which

terms-of-trade are offered). This formulation allows for a rich set of equilibrium outcomes,

including ones where different platforms attract different types of agents at different terms-

of-trade.

The free entry condition ensures that in equilibrium, no platform can earn positive profits

net of the advertising cost c. If profits were positive at some terms-of-trade τ ∈ T , more

platforms would enter offering these terms until the profit is competed away. Conversely, if

profits were negative, platforms would exit until profits rise to zero or that terms-of-trade

disappears entirely.

The market clearing condition equates the supply and demand for each set of agents. For

any measurable set of types I, the left side represents the total supply of these types (Is is

the total measure of s-side agents). The right side integrates across all active terms-of-trade

to find the total measure of these types being used, accounting for the matching probabilities

Λs(τ) and promised type distributions Gs.
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The weak inequality in market clearing allows for the possibility that some agent types

earn zero market utility and do not participate in any terms-of-trade. However, if all types

in set I earn strictly positive market utility, then supply must exactly equal demand. This

reflects that agents cannot be excluded from terms-of-trade offering them strictly positive

utility in equilibrium.

Finally, market clearing does not impose any restrictions on sets with zero measure.

That is, market clearing only needs to hold for almost every agent with Ū s(i) > 0. The

last condition fills this gap, imposing that every agent who has positive market utility must

get that level of utility in some terms-of-trade that gives platforms zero profits, i.e. at some

τ ∈ T .

2.5 Separation and Assortative Matching

We focus on two distinct characteristics of matching patterns that can emerge in equilibrium.

The first concerns whether different types mix together on the same side of a single market,

while the second concerns how types match across different markets. These patterns are

important for characterizing equilibrium in two-sided markets.

First, we ask whether the equilibrium involves different types participating on the same

side of a market, or whether types always separate into distinct markets. This motivates our

definition of separation:

Definition 3 (Separation) A terms-of-trade τ = (ϕs, Gs)s=a,b ∈ T is separating if for s ∈
{a, b} there exists an is such that dGs(is) = 1. A (partial or competitive search) equilibrium

is separating if every profit-maximizing terms-of-trade τ ∈ T is separating.

In a separating equilibrium, each active market attracts exactly one type from each side.

This means that in equilibrium, an agent knows exactly who they will match with when

they go to any active markets. This contrasts with pooling outcomes where multiple types

might search in the same market.

Second, we examine whether there is systematic matching between agent types across

markets. The classical notion of assortative matching describes whether high types match

with other high types. In our setting with multiple markets, we need a definition that works

across markets:

Definition 4 (Positive Assortative Matching) Take any subset of terms-of-trade T̂ ⊂
T. Select two elements (ϕs

k, G
s
k)s=a,b ∈ T̂ for k ∈ 1, 2 and numbers ik in the support of Ga

k

and jk in the support of Gb
k. If any such numbers satisfies (i1 − i2)(j1 − j2) ≥ 0, then T̂

has positively assortative matching (PAM). A (partial or competitive search) equilibrium has

PAM if T has PAM.
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To understand this definition, consider two markets and pick any type i1 that participates on

the a-side of market 1 and any type i2 that participates on the a-side of market 2. Similarly,

pick types j1 and j2 from the b-sides of these markets. PAM requires that if i1 > i2, then

j1 ≥ j2. That is, if we find a higher a-side type in market 1 than in market 2, we must

also find a weakly higher b-side type there. This captures the idea that higher types match

together, but extends it to environments with multiple markets and possible pooling of types.

We can analogously define Negatively Assortative Matching (NAM) by requiring (i1 −
i2)(j1 − j2) ≤ 0. Under NAM, finding a higher a-side type in market 1 than in market 2

implies we must find a weakly lower b-side type there.

Importantly, separation and assortative matching are logically distinct properties. Con-

sider a simple example with types Is = {0, 1} and three markets in T :

• Market 1: a-side type 0 matches exclusively with b-side type 0

• Market 2: a-side type 1 matches exclusively with b-side type 1

• Market 3: a mixture of a-side types 0 and 1 both match with b-side type 0

This equilibrium exhibits PAM: whenever we find a higher a-side type in one market than

another, we never find a strictly lower b-side type there. However, it is not separating because

market 3 pools different a-side types. Conversely, markets could be separating but match

high types with low types, violating PAM.

3 Motivating Examples

Before characterizing the equilibrium outcomes, we introduce three motivating examples.

Marriage Market. Suppose the agents are looking for partners for marriage. Here we

interpret types as the attractiveness of agents, and their roles as men or women. The

utility from forming a marriage depends on the private type of both the individual and their

marriage partner. As a parametric example, we assume the utility function is:

us(i, j) =
(
i
θ−1
θ + j

θ−1
θ

) θ
θ−1

, θ > 0.

In this example, θ > 0 is the substitution elasticity. This utility function satisfies the common

ranking assumption. Additionally, it is supermodular and satisfies increasing willingness-to-

pay, two additional assumptions that we introduce in Section 4.
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Labor Market. We can also use the same structure to obtain a model of the labor market.

Spence (1973) assumed that workers’ human capital was unobservable, while their education

choices were observable. Here we assume that both firm productivity and worker human

capital are unobservable and only transfers (i.e. wages) and queues (unemployment and

vacancy rates) can be used to signal type. More precisely, assume side-a firms hire side-b

workers. Then ua(i, j) is the output produced when a firm with productivity i hires a worker

with human capital j and ub(i, j) is the nonpecuniary amenity that the worker derives from

the match.

Market for Expertise. Suppose the side-a is the seller of an asset while side-b is the

buyer. Sellers hold a single asset which may be of two types, A or B, with equal probability.

Type A assets are naturally retained by the seller, while type B assets are more valuable

if purchased by the buyer. For example, the asset may be a mortgage and the type may

represent the difficulty of servicing the mortgage. The seller (mortgage issuer) may be better

able to handle a hard-to-service loan, while the buyer (investment bank) may have the deep

pockets to hold other loans. If the seller ultimately holds a type A asset, their payoff is 1,

while it is −1 if they hold a type B asset. The buyer’s payoffs are the opposite: 1 if they

purchase a type B asset and −1 if they purchase a type A asset.

While the seller does not know the type of the asset, he knows how easy it is to observe

the type, a number i. And while the buyer also cannot directly observe the type of the asset,

he knows his expertise in assessing assets, a number j. If a type i seller matches with a type

j buyer for an asset with quality A, they observe a normally distributed random variable

with mean −1 and precision τ(i, j), an increasing function. If it is instead an asset with

quality B, they observe a normally distributed random variable with mean 1 and precision

τ(i, j). They then jointly decide whether to trade the asset and make any specified transfers.

It is straightforward to show that they will trade the asset if and only if the signal is

positive. This means that the expected payoff of both the buyer and the seller from this

meeting (before transfers) is

u(i, j) =
1

2
− Φ(1, τ(i, j)),

where Φ(1, τ) is the probability that a normally distributed random variable with mean 1

and precision τ is negative. Again, these payoffs are increasing in both i and j and, under

appropriate restrictions on τ , may be supermodular.

To understand the payoffs, proceed as follows: If the asset is of type A, with probability

1/2, the trade occurs with probability 1−Φ(−1, τ) = Φ(1, τ), resulting in payoff −1 for the

buyer and 0 for the seller. If the asset if of type B, also with probability 1/2, the trade

occurs with probability 1 − Φ(1, τ), resulting in payoff 1 for the buyer and 0 for the seller.
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Adding this up gives the buyer’s expected payoff. The seller’s expected payoff is constructed

symmetrically.

Communicable Disease. Suppose individuals are looking to interact with each other,

and their types are their probability of being healthy. If a healthy individual interacts with

the sick individual, they may become sick, incurring an expected cost κ (the product of the

probability of getting sick and the cost of being sick). Additionally, individuals gain 1 from

an interaction. Sick individuals get 1 from interacting with either sick or healthy people.

This means that if a side-s agent who is healthy with probability i matches with an

individual who is healthy with probability j, the value of the interaction is us(i, j) = 1 −
κi(1−j). More specifically, the probability that the individual gets sick is proportional to the

product of the probability that they are healthy i and that their partner is sick j. This payoff

structure is similar to Philipson and Posner (1993) (for HIV/AIDS) and Farboodi, Jarosch

and Shimer (2021) (for COVID-19). Interestingly, while the the payoff function is increasing

in the partner’s probability of being healthy and is supermodular, it is decreasing in the

own probability of being healthy, since healthy people stand to lose more from interacting

with sick people. Thus it satisfies decreasing willingness-to-pay, the flip side of increasing

willingness-to-pay and another assumption we introduce in Section 4.

4 Characterization of Equilibrium

This section develops some preliminary theoretical results. We begin by establishing that

market utilities must be continuous in equilibrium. We then show that finding a partial equi-

librium is equivalent to solving a particular optimization problem. Next, we demonstrate

that under supermodularity, all equilibria must be separating. Finally, we establish condi-

tions under which market utilities are monotonic in agent types, allowing us to characterize

equilibria through a system of differential equations.

4.1 Continuity of Market Utilities

Our first result establishes that market utilities must be continuous in any competitive search

equilibrium. This property will be crucial for our subsequent analysis.

Lemma 1 In any competitive search equilibrium, Ū s is continuous for s ∈ {a, b}.

The proof is in Appendix A.

This continuity property follows from agents’ ability to mimic the strategies of nearby

types. Intuitively, if market utilities had a discontinuous jump, types with a low market
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utility would enter the market for types with a high market utility, so such a market could

not exist. This contradicts the market clearing condition.

4.2 The Platform’s Problem

We next reformulate the partial equilibrium definition as a constrained optimization problem.

This reformulation provides a tractable way to find equilibria and establish their properties.

The key insight is that any terms-of-trade offered in equilibrium must maximize platform

profits subject to constraints which ensure that the right type of agents are willing to come

to the terms-of-trade and the wrong types are willing to stay away.

Consider a platform choosing terms-of-trade to maximize its profit per unit of advertising

effort. Given market utilities Ū s, the platform solves:

max
(λa,λb)∈Λ,

{ϕs,Gs}s=a,b∈T

m(λa, λb)(ϕa + ϕb) (7)

s.t. Ū s(i) ≥ λs

(∫
I−s

us(i, j)dG−s(j)− ϕs

)
∀i ∈ Is, s ∈ {a, b},∫

Is
Ū s(i)dGs(i) =

∫
Is
λs

(∫
I−s

us(i, j)dG−s(j)− ϕs

)
dGs(i), s ∈ {a, b}.

The objective function captures the platform’s revenue from fees charged to both sides of

the market, weighted by the probability of successfully forming a match. The first constraint

ensures that no agent type can obtain utility higher than their market utility by going to

this terms-of-trade. The second constraint requires that agents who do participate (those in

the support of Gs) receive exactly their market utility.

Our first result establishes the close link between a solution to this optimization problem

and a partial equilibrium:

Lemma 2 Given Ūa, Ū b, a partial equilibrium {T p, T, (Λs, Ū s)s=a,b} can be constructed as

follows:

• T p is the set of all τ = (ϕs, Gs)s=a,b for which there exist (λs)s=a,b ∈ Λ satisfying the

constraints of Problem (7);

• For τ ∈ T p, Λs(τ) is the corresponding λs from the constraints of (7);

• T is the set of τ ∈ T p such that (Λs(τ), ϕs, Gs)s=a,b solves Problem (7).

Conversely, for any partial equilibrium {T p, T, (Λs, Ū s)s=a,b} and any τ = (ϕs, Gs)s=a,b ∈ T ,

the tuple (Λs(τ), ϕs, Gs)s=a,b solves problem (7).
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The proof is in Appendix A.

While it is always useful to restructure an equilibrium as an optimization problem, prob-

lem (7) remains challenging to solve directly. The difficulty stems from its mathematical

structure: it is a mathematical program with equilibrium constraints, which exhibits inher-

ent nonconvexity because increasing dGs(i) from zero changes inequality constraints into

equality constraints. To make progress, we impose additional structure on preferences.

4.3 Supermodularity and Separation

In this section, we prove that if preferences are supermodular, equilibrium matching patterns

exhibit a particularly simple structure. First, we state the supermodularity assumption:

Assumption 2 (Supermodularity) For every s ∈ {a, b}, i, i′ ∈ Is and j, j′ ∈ I−s with

i > i′ and j > j′, us(i, j) + us(i′, j′) > us(i, j′) + us(i′, j).

Combined with our earlier Common Ranking assumption, Supermodularity implies that

higher types have a stronger preference for matching with higher partner types. This addi-

tional structure allows us to relate the competitive search equilibrium to a simpler optimiza-

tion problem:

max
(λa,λb)∈Λ,{ϕs,ks}s=a,b

m(λa, λb)(ϕa + ϕb) (8)

s.t. Ū s(i) ≥ λs(us(i, k−s)− ϕs) ∀i < ks, i ∈ Is, s ∈ {a, b}

Ū s(ks) = λs(us(ks, k−s)− ϕs) ∀s ∈ {a, b},

ϕa + ϕb ≥ 0.

Problem (8) differs from the problem (7) in two important ways. First, it considers only

separating terms-of-trade in which exactly one type from each side participates in each

market. Second, it includes only incentive constraints that prevent agents i < ks from

deviating to terms-of-trade intended for higher types ks. We ignore the constraints that

prevent deviations to terms-of-trade intended for lower types.

Lemma 3 Assume Common Ranking and Supermodularity. A tuple {T p, T, (Λs, Ū s)s=a,b}
together with a measure µ on T constitutes a competitive search equilibrium if and only if:

1. For each τ = (ϕa, ϕb, Ga, Gb) ∈ T , there exist types (ka, kb) ∈ Ia × Ib such that the

associated distributions are degenerate: dGa(ka) = dGb(kb) = 1;

2. For each τ = (ϕa, ϕb, Ga, Gb) ∈ T , the fees ϕs and matching probabilities λs = Λs(τ)

solve problem (8) given the types (ka, kb) and market utilities Ū s, with maximized value

equal to c;
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3. The set of possible terms-of-trade T p and matching probabilities Λa,Λb satisfy the op-

timal search and impossible terms-of-trade conditions from Definition 1;

4. The measure µ satisfies the market clearing condition and Ū s satisfies the market utility

condition from Definition 2.

The proof is in Appendix A.

The first two parts of Lemma 3 characterize the profit-maximizing terms-of-trade in a

competitive search equilibrium under Supermodularity. First, such terms-of-trade attract

one type from each side of the market, rather than a mixture over types. Second, such

terms-of-trade solve problem (8), which in particular includes the constraints for keeping

out lower types but drops the constraints from keeping out higher types. The last two parts

of the Lemma tell us how to find the other elements of a competitive search equilibrium.

This Lemma yields two important implications for equilibrium structure. First, they

immediately establish our main separation result:

Corollary 1 Assume Common Ranking and Supermodularity. Any competitive search equi-

librium is separating.

To understand why pooling cannot occur in equilibrium, consider a market where multiple

types participate on at least one side. Common Ranking implies that all participants would

prefer to match with only the highest types from the other side of the market. This suggests

creating a new market charging higher fees to attract only these high types. Supermodularity

guarantees that lower types would be unwilling to pay the fees that make higher types

indifferent, because the higher types value the improved matching enough to pay more than

lower types could afford. While such a market might attract even higher types than those in

the original pooling market, potentially making it infeasible, this just creates further profit

opportunities. Even higher fees could be charged to attract those higher types. This process

continues until complete separation is achieved.

An example illustrates the need for Supermodularity. Consider a market with Is = {0, 1}
and payoffs us(0, 0) = 1, us(0, 1) = 1.5, us(1, 0) = 1.1, and us(1, 1) = 1.2 for s ∈ {a, b}.
These payoffs satisfy Common Ranking but not Supermodularity. With matching function

m(λa, λb) = 1−λa−λb on the unit simplex (λa ≥ 0, λb ≥ 0, and λa+λb ≤ 1), market utilities

Ū s(0) = 0.33 and Ū s(1) = 0.25, and appropriate population distributions (F s(0) = 0.124

and c ≈ 0.293), we find a competitive search equilibrium with pooling. Specifically, a single

market attracts both types on both sides, with Gs(0) = F s(0), λs ≈ 0.320, and ϕs ≈ 0.406

for s ∈ {a, b}.
Second, the lemma establishes that only the constraint of excluding lower types can bind

in equilibrium:
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Corollary 2 Assume Common Ranking and Supermodularity. In any competitive search

equilibrium, take an active market τ = (ϕs, Gs)s=a,b ∈ T and the type i in the support of Gs.

Then for all i′ > i, Ū s(i′) > U s(i′, τ,Λs(τ)).

This slack constraint for excluding higher types proves especially valuable for characterizing

equilibria with positive assortative matching, as it allows us to solve for market utilities

recursively starting from the lowest type.

4.4 Monotonicity of Market Utility

To further characterize equilibrium, we impose monotonicity in agents’ willingness-to-pay for

matching. This additional structure ensures that market utility varies systematically with

agent types, simplifying the analysis of incentive constraints.

Assumption 3 (Increasing WTP) ∀ s = a, b, i > i′ ∈ Is, j ∈ I−s, us(i, j) ≥ us(i′, j).

Assumption 4 (Decreasing WTP) ∀ s = a, b, i > i′ ∈ Is, j ∈ I−s, us(i, j) ≤ us(i′, j).

We refer to these assumptions collectively as monotone willingness to pay.

Under either assumption, market utilities inherit the monotonicity of the underlying

preferences:

Lemma 4 Assume Common Ranking. In any competitive search equilibrium:

1. If willingness-to-pay is increasing, then Ū s(i) is weakly increasing in i.

2. If willingness-to-pay is decreasing, then Ū s(i) is weakly decreasing in i.

The proof is again in Appendix A. The proof essentially works by eliminating the fees from

problem (7) or, in the Supermodular case, from problem (8):

max
(λa,λb)∈Λ,(ka,kb)

m(λa, λb)

(
ua(ka, kb) + ub(kb, ka)− Ūa(ka)

λa
− Ū b(kb)

λb

)
(9)

s.t. Ū s(i)− Ū s(ks) ≥ λs(us(i, k−s)− us(ks, k−s) ∀i < ks, i ∈ Is, s ∈ {a, b},

ua(ka, kb) + ub(kb, ka)− Ūa(ka)

λa
− Ū b(kb)

λb
≥ 0.

The remaining incentive constraint then determines monotonicity of market utility. This

monotonicity result provides the foundation for our subsequent analysis of equilibrium match-

ing patterns, where we turn to continuous types.
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5 Continuous Type Distribution

The previous sections established fundamental properties of equilibrium in our two-sided

matching market with private information: equilibria must be separating under supermod-

ularity, market utilities are continuous and monotonic, and the platform’s problem can be

reformulated as a constrained optimization. We now leverage these insights to provide a

detailed characterization of equilibrium when agent types are continuously distributed. This

continuous framework allows us to employ differential methods, yielding sharp predictions

about equilibrium structure and matching patterns. We start by developing a first-order

approach that replaces global incentive constraints with local ones, showing this simplifica-

tion is valid under our maintained assumptions. We then exploit the resulting differential

structure to characterize positively assortative matching (PAM) equilibria, with particularly

clean results emerging in the symmetric case. Finally, we establish sufficient conditions for

the existence of PAM equilibria in a limiting case without search frictions.

5.1 First-order Approach

Having established that all equilibrium markets must be separating under Common Ranking

and Supermodularity (Lemma 3), we now develop tools for characterizing these markets when

types are continuously distributed. Throughout this section, we focus on the case where the

support of the type distribution is the unit interval, Is = [0, 1] for s ∈ {a, b}.
Our first step is to establish sufficient regularity of market utilities to justify a local

approach to incentive constraints:

Lemma 5 Assume Common Ranking, Supermodularity, and Monotone Willingness-to-Pay.

If Is = [0, 1] for s = a, b, then in any competitive search equilibrium, market utilities Ū s(i)

are differentiable almost everywhere. For any active market τ ∈ T that attracts types (ka, kb)

with U s differentiable at ks,

Ūa′(ka) = Λa(τ)ua
1(k

a, kb) and Ū b′(kb) = Λb(τ)ub
1(k

b, ka),

where us
1 denotes the partial derivative of us with respect to its first argument.

The proof is in Appendix B.

Given this lemma, for any market attracting types ka and kb with U s differentiable at
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ks, we can replace the global incentive constraints with local ones in problem (9).

V̂ (ka, kb) = max
(λa,λb)∈Λ

m(λa, λb)
∑
s=a,b

(
us(ks, k−s)− Ū s(ks)

λs

)
(10)

s.t. Ū s′(ks) = λsus
1(k

s, k−s) for s = a, b∑
s=a,b

(
us(ks, k−s)− Ū s(ks)

λs

)
≥ 0.

If the constraint set is empty, V̂ (ka, kb) is undefined. We stress that V̂ (ka, kb) represents the

gross profits a platform earns from posting a terms-of-trade that matches ka to kb, assuming

that only the local incentive constraint is binding. Even if (ka, kb) yields a high value of

V̂ (ka, kb), creating this market may not be feasible because other incentive constraints may

bind.

We can use the constraints in problem (10) to eliminate for λs from the problem, ex-

pressing the platform’s maximized payoff directly:

V̂ (ka, kb) = m

(
Ūa′(ka)

ua
1(k

a, kb)
,

Ū b′(kb)

ub
1(k

b, ka)

)∑
s=a,b

(
us(ks, k−s)− Ū s(ks)us

1(k
s, k−s)

Ū s′(ks)

)
. (11)

Again, we require that (
Ūa′(ka)

ua
1(k

a, kb)
,

Ū b′(kb)

ub
1(k

b, ka)

)
∈ Λ

and ∑
s=a,b

(
us(ks, k−s)− Ū s(ks)us

1(k
s, k−s)

Ū s′(ks)

)
≥ 0;

if not V̂ (ka, kb) is undefined.

Equation (11) captures how local incentive constraints shape the platform’s profits. The

matching rates are determined by the elasticity of agents’ market utility Ū s relative to their

payoff us, while the total surplus must cover both the direct utility from matching and an

information rent term reflecting agents’ local incentive constraints. This expression reveals

important features of the equilibrium construction. When ka, kb > 0 and market utilities

Ū s(i) are known, V̂ (ka, kb) is completely determined by incentive constraints. There is no

optimization problem left to solve. The local incentive constraints pin down the matching

rates, and these in turn determine the platform’s revenue through the matching probability

m. Thus, finding active markets reduces to identifying pairs (ka, kb) that yield the highest

value of V̂ (ka, kb), subject to market clearing.

However, some challenges remain. First, we need to determine the market utilities Ū s(i)
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themselves. Second, markets that attract the lowest types (ka = 0 or kb = 0) require special

treatment because the local incentive constraints don’t bind for these types. These markets

must solve the unconstrained platform problem, which then provides boundary conditions

for the market utilities of higher types. Similarly, we can only compute V̂ (ka, kb) at points

where the U s are differentiable, which we have so far established is true almost everywhere.

Lastly, we need to verify that the sum of fees is non-negative at all active terms-of-trade.

This requirement is not relevant when c > 0 since all platforms must make strictly positive

profits to break even. When c = 0, this requirement becomes relevant, which we discuss

wherever it is necessary.

This structure suggests a recursive approach to finding equilibria: solve the unconstrained

problem for the lowest types, use this to initiate the market utilities, and then ensure higher-

type markets satisfy both the local incentive constraints and market clearing. We pursue

this approach in detail when we study positively assortative matching in the remainder of

this section.

5.2 Necessary Conditions for PAM under Symmetry

In this section, we study a particular class of equilibria that combine positive assortative

matching with symmetry between sides of the market. This focus serves two purposes.

First, such equilibria are particularly tractable as the analysis reduces to a one-dimensional

problem. Second, many real-world matching markets exhibit substantial symmetry between

sides (for example, dating markets or peer-to-peer trading platforms), making this a natural

case to understand thoroughly.

We impose symmetry through four key assumptions:

• Equal populations on each side: Ia = Ib = I;

• Identical type distributions: F a = F b = F ;

• Symmetric match utilities: ua(i, j) = ub(j, i) = u(i, j) for all i, j, satisfying Common

Ranking, Supermodularity, and Monotone WTP;

• Symmetric matching technology: m(λa, λb) = m(λb, λa).

We then look for a symmetric competitive search equilibrium with positively assortative

matching, meaning it satisfies three properties:

• Side a type i agents match with side b type i agents for all i;

• Same-type agents on different sides have the same market utility: Ūa(i) = Ū b(i) = Ū(i);
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• Markets for same-type agents have symmetric terms: In the active market τ that

attracts type i agents on both sides, we have λa(τ) = λb(τ) = ℓ(i) and fees ϕa(τ) =

ϕb(τ) = Φ(i).

Such equilibria, if they exist, exhibit PAM. Moreover, symmetry reduces our search for

equilibrium to a one-dimensional problem: once we determine the market utility Ū(i) for each

type i, the matching rates and fees for both sides of each market follow directly. Additionally,

rather than working with the two dimensional feasible set of matching probabilities Λ, we

can work with the one-dimensional set [0, λ̄], where (λ̄, λ̄) ∈ Λ and satisfies m(λ̄, λ̄) = 0.

Thus λ̄ is the highest matching probability that can be obtained by both sides of the market

under symmetry.

For any market attracting type i agents from both sides, define:

h(λ, i) ≡ λ

(
u(i, i)− c

2m(λ, λ)

)
. (12)

This captures the per-person utility in a symmetric market where i matches with i with

probability λ ∈ [0, λ̄]: u(i, i) is the utility from matching with the same type, and c
2m(λ,λ)

is

the fee that each party must pay to cover the platform’s advertising cost c.2

Under full information (ignoring incentive constraints), the equilibrium matching prob-

ability for type i agents would maximize h(λ, i) subject to the nonnegativity constraint on

fees, u(i, i)− c
2m(λ,λ)

> 0. Let ℓ∗(i) denote this maximizer. For expositional convenience, we

assume in this section that ℓ∗(i) > 0 for all i, or equivalently 2u(i, i)m(0, 0) > c; otherwise

some types would not participate in the market both with private and full information. Be-

cause only downward incentive constraints can bind (from Lemma 3 and Corollary 2), the

lowest types (i = 0) must achieve this unconstrained optimum: ℓ(0) = ℓ∗(0).

For higher types, however, local incentive constraints bind. In any active market, agents

must receive utility Ū(i) = h(ℓ(i), i). Differentiating this equation using the definition of h

in equation (12) gives

Ū ′(i) = h1(ℓ(i), i)ℓ
′(i) + ℓ(i)

(
u1(i, i) + u2(i, i)

)
,

where h1 denotes the partial derivative of h with respect to its first argument. Moreover,

from Lemma 5, we know that the local incentive constraint Ū ′(i) = ℓ(i)u1(i, i) holds almost

2For c > 0, h is always defined for λ ∈ [0, λ̄) but converges to −∞ as λ → λ̄. When c = 0, h(λ, i) = λu(i, i),
so h is defined on the closed interval [0, λ̄].
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everywhere. Plugging into the previous equation, we get that

h1(ℓ(i), i)
ℓ′(i)

ℓ(i)
= −u2(i, i) (13)

almost everywhere.

This ordinary differential equation (13), combined with the initial condition ℓ(0) = ℓ∗(0),

characterizes how matching probabilities must vary with types in any symmetric PAM equi-

librium. The structure of the equation reveals how incentive constraints distort matching

probabilities relative to the full information benchmark ℓ∗(i). The left-hand side captures

the rate of change in matching probabilities, scaled by h1 which measures the marginal value

of increasing the meeting probability. The right-hand side involves u2(i, i), which captures

how an agent’s utility changes when their partner’s type increases.

This discussion glosses over four technical issues. First, at i = 0, the optimization problem

is unconstrained, so the first order condition h1(ℓ(0), 0) = 0 holds. This in turn means that

we cannot directly apply the ordinary differential equation (13) at i = 0. Instead, we look

for a solution to the differential equation with the property that limi→0 ℓ(i) = ℓ∗(0).

Second, Lemma 4 tells us that market value is monotone and so almost everywhere

differentiable. This means that the differential equation (13) only holds almost everywhere,

leaving open the possibility of discontinuities in ℓ function. The proof of Proposition 1

establishes that ℓ must in fact be continuous.

Third, there are two such solutions, one with ℓ increasing and one with ℓ decreasing. We

show in the proof of Proposition 1 that the first solution is valid with Increasing WTP and

the second with Decreasing WTP.

Lastly, is it possible that the solution to the differential equation (13), combined with the

boundary conditions, give us matching probabilities and equilibrium utilities that are non-

positive? We show this can never be the case in the proof of Proposition 1. These technical

considerations, while subtle, are crucial for a complete understanding of the equilibrium

structure. They highlight how the matching technology’s properties interact with agents’

preferences to determine the appropriate solution concept.

The following Proposition combines these insights:

Proposition 1 Assume Common Ranking, Supermodularity, and Monotone WTP. Also as-

sume 2u(i, i)m(0, 0) > c and u2(i,i)
u(i,i)

is bounded above, for all i. If there exists a symmetric

competitive search equilibrium with PAM, then:

1. The matching probabilities ℓ(i) solve ordinary differential equation (13) with limiting

condition ℓ(0) = ℓ∗(0);
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2. Market utilities satisfy Ū(i) = h(ℓ(i), i);

3. Fees satisfy Φ(i) = u(i, i)− Ū(i)/ℓ(i);

4. These solutions satisfy all global incentive constraints.

Moreover, with

• Increasing WTP, Ū(i), ℓ(i), and Φ(i) are increasing in i and ℓ(i) ∈ [ℓ∗(i), λ̄] for all i;

• Decreasing WTP, Ū(i), ℓ(i), and Φ(i) are decreasing in i and ℓ(i) ∈ (0, ℓ∗(i)] for all i.

The proof is in Appendix B.

Proposition 1 has several notable implications. First, the differential equation character-

ization of equilibrium has remarkable simplicity and power. While we only imposed local

incentive constraints, the resulting allocation automatically satisfies global incentive con-

straints. This is far from obvious: in many mechanism design problems, local incentive

constraints are not sufficient for global incentive compatibility.

Second, the direction of Monotone Willingness-to-Pay completely determines the struc-

ture of equilibrium utilities, contact rates, and fees. With Increasing WTP, higher types

receive higher utilities and face higher contact rates and fees. With Decreasing WTP, the

pattern reverses. This stands in contrast to the case with observable types (see Section 7.2),

where the direction of these patterns depends on whether the equilibrium payoff u(i, i) is

increasing or decreasing, not on the willingness-to-pay.

Third, private information systematically distorts allocations relative to the observ-

able types benchmark. With Increasing WTP, equilibrium contact rates exceed the full-

information optimum ℓ∗(i). The free entry condition then implies that fees must also be

higher to cover platform costs. With Decreasing WTP, these distortions reverse: both con-

tact rates and fees fall below their full-information levels. These distortions reflect platforms’

optimal response to incentive constraints: they adjust contact rates and fees to make mim-

icking less attractive to lower types.

We close this section by noting that, while Proposition 1 provides a complete charac-

terization of symmetric PAM equilibria when they exist, it does not guarantee existence.

Once we find candidate equilibrium utilities Ū(i) by solving the ODE, we know all incen-

tive constraints will be satisfied, both local and global. However, we still must verify that

no platform would prefer to create a market matching different types. Since we know the

market utility in this candidate equilibrium, this amounts to checking the value of objects

like V̂ (ka, kb) in equation (11), which is straightforward but must be done numerically. The

next subsection tackles this verification problem directly, providing sufficient conditions for

the existence of PAM equilibria.
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5.3 Sufficient Conditions for PAM under Symmetry

We consider a limit without search frictions. More specifically, we consider the special case

where c = 0. We study two cases, first with an increasing WTP and then with a decreasing

WTP. The characterization in the two cases is notably different, an issue we return to at the

end of this section.

Assumption 5 space

(a)
(
λ̄ u1(i,i)

u1(i,j)
, λ̄u1(j,j)

u1(j,i)

)
/∈ Λ for i ̸= j,

(b) u1(i, 0) = 0, for i ∈ I.

Proposition 2 Assume Common Ranking, Supermodularity, and increasing WTP. Also

assume c = 0 and assumption 5, there is a PAM competitive search equilibrium. In the market

attracting type i agents, the matching probability is ℓ(i) = λ̄; the fee solves Φ′(i) = u2(i, i)

with Φ(0) = 0; equilibrium utility solves Ū ′(i) = λ̄u1(i, i) with Ū(0) = λ̄u(0, 0).

The proof is in Appendix B.

Assumption 6 space

(a) u(i, j) + u(j, i) ≤ u(i, i)u1(i,j)
u1(i,i)

+ u(j, i) u1(j,i)
u1(j,j)

(b)

(
λ̄u(0,0)u1(j,j)

u(j,j)u1(j,0)
exp

(∫ j

0
u1(k,k)
u(k,k)

dk
)
,
u(0,j)+u(j,0)−u(j,j)

u1(j,0)
u1(j,j)

λ̄u(0,0)

)
/∈ Λ.

Proposition 3 Assume Common Ranking, Supermodularity, and Decreasing WTP. Also

assume c = 0 and assumption 6, there is a PAM competitive search equilibrium. In the

market attracting type i agents, the matching probability solves ℓ′(i) = −u2(i,i)
u(i,i)

, with ℓ(0) = λ̄

and the fee is Φ(i) = 0, ∀i; equilibrium utility solves Ū ′(i)
Ū(i)

= u1(i,i)
u(i,i)

, with Ū(0) = λ̄u(0, 0).

The proof is in Appendix B.

Again, we illustrate this proposition with a simple example. Let u(i, j) satisfy

u(i, j) = 1− κΦ(i)(1− ϕ(j))

for 0 ≤ Φ(i) ≤ 1 and 0 < κ ≤ 1. We think of this as a model of disease transmission. i is

the probabliity that an individual is healthy. If he interacts with anyone, he gets a utility
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benefit of 1, but if he interacts with a sick person and was previously healthy, he gets the

disease, costing utility κ. Thus the cost of interacting with someone who is healthy with

probability j is κi(1− j). Again, this function satisfies Common Ranking, Supermodularity,

and Decreasing WTP, as well as conditions (1) in assumption (6). It satisfies the condition

(2) in assumption (6) if λ̄ = 1. The proposition then establishes that there is a PAM

competitive search equilibrium with this payoff function and characterizes it completely.

There are two ways markets can induce agents to self-select, through fees and contact

rates. We find that with Increasing WTP, fees are critical in the limit without platforms.

All active markets have the same contact rate, but the more desirable agents, who have a

higher willingness-to-pay for matches, exclude lower types by paying higher fees. Contact

rates are not useful for excluding lower types because higher types value meetings more than

lower types do.

In contrast, with a Decreasing WTP, contact rates play the critical role. Now fees are

zero in all markets, but the more desirable agents, who have a lower willingness-to-pay for

matches, exclude lower types by suppressing their contact rate. Now fees are not useful for

excluding lower types because higher types are unwilling to pay high fees for matching.

6 Other Equilibrium Patterns

6.1 PAM Equilibrium without Symmetry

In this section, we discuss an algorithm to compute a PAM competitive search equilibrium

with asymmetry. For exposition simplicity, we focus on cases where all types participate:

the condition (2) in the definition of a competitive search equilibrium holds with equality

for types. We discuss the other cases briefly at the end of this section. Our discussion

so far established that all equilibrium terms-of-trade must be separating. With PAM CSE

and continuous type distribution, there is only one terms-of-trade that attracts a-side type-i

agent. In this section, we discuss an algorithm to compute a competitive search equilibrium

with PAM. For exposition simplicity, we focus on cases where all types participate: the

condition (2) in the definition of a competitive search equilibrium holds with equality for

types. We discuss the other cases briefly at the end of this section.

Our characterization follows two steps. First, in a PAM equilibrium, for the type 0’s

market to clear, σ(0) = 0. That is, some platforms post terms-of-trade that attracts the

lowest types on both sides. From Lemma 3, this terms-of-trade is undistortted. Lemma 6

summarizes the details of this terms-of-trade. Secondly, we solve other equilibrium terms-

of-trade as solution of a system of odes, detailed in Lemma 8.

26



Lemma 6 Assume Common Ranking and Supermodularity. In a PAM CSE, σ(0) = 0 and

(λs(0))s=a,b, Ū
b(0) solve the following unconstrained problem, for a fixed Ūa(0) = υ:

c = max
λa,λb

m(λa, λb)

(
ua(0, 0) + ub(0, 0)− υ

λa
− Ū b(0)

λb

)
, (14)

with the solution denoted as (λs∗
0 (υ))s=a,b and Ū b∗

0 (υ).

Lemma 7 Assume common ranking, supermodularity, and monotone willingness-to-pay. In

any PAM competitive search equilibrium, λs(i) is continuous.

Proof. In Appendix C.1.

We characterize the PAM equilibrium using a system of odes in (λa, λb), summarized in

Lemma 8.

Lemma 8 Assume common ranking, supermodularity and continuous type distribution. A

PAM CSE is characterized by (λs, Ū s)s=a,b, σ that solve

νa(i)
λa′(i)

λa(i)
= −ι(i)− ub

2(σ(i), i), νb(i)
λb′(i)

λb(i)
= ι(i)− σ′(i)ua

2(i, σ(i)), (15)

Ūa′(i) = λa(i)ua
1(i, σ(i)), Ū b′(σ(i)) = λb(i)ub

1(σ(i), i), (16)

σ′(i) =
λa(i)

λb(i)

Iaḡa(i)

Ibḡb(σ(i))
, (17)

with the boundary conditions

σ(0) = 0, σ(1) = 1, λs(0) = λs∗
0 (Ūa(0)), Ū b(0) = Ū b∗

0 (Ūa(0)),

where

νa(i) =

(
ϵ1(λ

a(i), λb(i))

m(λa(i), λb(i))
c+

Ūa(i)

λa(i)

)
, νb(i) =

(
ϵ2(λ

a(i), λb(i))

m(λa(i), λb(i))
c+

Ū b(σ(i))

λb(i)

)
, (18)

ι(i) = σ′(i)νa(i)
ua
1,2(i, σ(i))

ua
1(i, σ(i))

− νb(i)
ub
1,2(σ(i), i)

ub
1(σ(i), i)

,

ϵ1(λ
a, λb) =

λam1(λ
a, λb)

m(λa, λb)
, ϵ2(λ

a, λb) =
λbm2(λ

a, λb)

m(λa, λb)
.

Proof. In Appendix C.2.

Discussion. It is possible that there is no solution to the differential equation system from

Lemma 8 where Ū s(i) ≥ 0 for all i ∈ Is. In this case, the PAM equilibrium involves some
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types not participating. Under increasing willingness-to-pay, there are three possible non-

participating scenarios. First, it could be that the side-a low types are not participating:

there is a threshold type ia such that Ūa(i) = 0 for all i ≤ ia. In this case, the assignment

function starts from ia. The second case invovles the same pattern, on side b. Lastly, it is

possible that the lowest types on both sides do not participate. This happens when non of

the terms-of-trade that attract side-s type-0 delivers.

6.2 NAM Equilibrium

In this section, we discuss an algorithm to compute a NAM competitive search equilibrium.

First, we focus on characterization of the (0, 1) market. In this market, the incentive con-

straint on side-a is irrelevant. Given the equilibrium utility Ū b(1) and λb, the matching

proability for side-a type-0 and her equilibrium utility are solutions to:

c = max
λa

m
(
λa, λb

)(
ua(0, 1) + ub(1, 0)− Ūa(0)

λa
− Ū b(1)

λb

)
. (19)

Lemma 9 Assume common ranking, supermodularity and continuous type distribution. A

NAM CSE is characterized by (λs, Ū s)s=a,b, σ that solve

νa(i)
λa′(i)

λa(i)
= −ι(i)− ub

2(σ(i), i), νb(i)
λb′(i)

λb(i)
= ι(i)− σ′(i)ua

2(i, σ(i)), (20)

Ūa′(i) = λa(i)ua
1(i, σ(i)), Ū b′(σ(i)) = λb(i)ub

1(σ(i), i), (21)

σ′(i) = − λa(i)

λb(σ(i))

Iaḡa(i)

Ibḡb(σ(i))
, (22)

with the boundary conditions

σ(0) = 1, σ(1) = 0, (λs(0), Ū s(0)) solve problem 19 given (λ−s(1), Ū−s(1)).

where

νa(i) =

(
ϵ1(λ

a(i), λb(i))

m(λa(i), λb(i))
c+

Ūa(i)

λa(i)

)
, νb(i) =

(
ϵ2(λ

a(i), λb(i))

m(λa(i), λb(i))
c+

Ū b(σ(i))

λb(i)

)
, (23)

ι(i) = σ′(i)νa(i)
ua
1,2(i, σ(i))

ua
1(i, σ(i))

− νb(i)
ub
1,2(σ(i), i)

ub
1(σ(i), i)

,

ϵ1(λ
a, λb) =

λam1(λ
a, λb)

m(λa, λb)
, ϵ2(λ

a, λb) =
λbm2(λ

a, λb)

m(λa, λb)
.
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7 Discussion

7.1 Sorting with Conventional Matching Function

The key novelty of the environment in this paper is the assumption of a matching function

that with two sides of a match which can have different matching probabilities. This as-

sumption allows for the technological possibility of negative sorting. Before proceeding to the

characterization of equilibrium, we consider an alternative “random” matching technology

that involves only agents and platform advertising efforts. Platforms intermediate matches

between two agents. Instead of the matching function in section 2.2, suppose the number of

matches in the market is M̃(na, α), where na is the measure of agents, and α is the effort by

platforms. When a match happens, it is a match between two randomly selected agents on

the platform, so if there are a shares ωi of type i agents in a particular market, the share

of (i, j) matches is ωiωj. This matching technology is a direct extension of the standard

bilateral matching technology into our environment.

The core result of this section is the impossibility of negative sorting with this random

matching technology. To show this, we define a set of active terms-of-trade as T , and the

effort by platforms as α, where α(τ) is the aggregate effort across all platforms in τ ∈ T .

We define the covariance of matching types as:

COV(T, α) =

∑
τ∈T M̃(Na(τ), α(τ))

∑I
i=1

∑J
j=1 ωiωj (i− E(i)) (j − E(j))∑

τ∈T M̃(Na(τ), α(τ))
, (24)

where

E(i) =

∑
τ∈T M̃(Na(τ), α(τ))

∑I
i=1 ωii∑

τ∈T M̃(Na(τ), α(τ))
and E(j) =

∑
τ∈T M̃(Na(τ), α(τ))

∑I
i=1 ωij∑

τ∈T M̃(Na(τ), α(τ))
.

The covariance between agents’ types and their matching partners’ types must be non-

negative with random matching technology, as stated in the following lemma:

Lemma 10 Under a random matching technology, COV(T, α) ≥ 0.

Proof. Due to random matching within markets, E(i) = E(j). Thus we can write the

covariance as

COV(T, α) =

∑
τ∈T M̃(Na(τ), α(τ))

[∑I
i=1 ωi (i− E(i))

]2
∑

τ∈T M̃(Na(τ), α(τ))
≥ 0.
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Lemma 10 highlights a physical restriction on sorting pattern due to random matching

within markets. It is impossible to have negative assortative matching because for each

match made between a high-type agent and a low-type agent, there must be another match

between each types within themselves. The core assumption that leads to this result is that

the contact rates for agents within each market equal. To allow for the possibility of negative

assortative matching, we introduce our matching technology with two sides and a roll for

platforms.

7.2 Sorting with Observable Types

First consider the competitive search equilibrium with observable types. This environment

is similar to Shi (2001) and Eeckhout and Kircher (2010). The recast of their result in our

definition will be a benchmark for our characterization of competitive search equilibrium

with private information. In the observable-type model, the platforms can directly control

the type distributions by charging type-specific fees. We omit the details for the definition

of equilibrium with observable types in Appendix C.3.

Proposition 4 Assume M
(
na, nb

)
=
(
(na)−γ + (nb)−γ + 1

)− 1
γ and fi,j ̸= fi,j′ for j ̸= j′.

There exists a unique PAM competitive search equilibrium with observable types if f
γ

1+γ

i,j is

supermodular.

Proof. In Appendix C.4.

8 Concluding Remarks

How do individuals sort in the presence of private information? We use a competitive search

model to answer that question. We prove that under Common Ranking and Supermodularity,

each side of every active market only attracts one type of agent. We then characterize

positively assortative matching under those two assumptions and Monotonic Willingness-to-

Pay. We prove that with Increasing WTP, higher types have higher utility, match at a faster

rate, and pay higher fees. With Decreasing WTP, higher types have lower utility, match

at a lower rate, and pay lower fees. Finally, we provide sufficient conditions for positively

assortative matching when the role of platforms vanishes. With Increasing WTP, only fees

differ across active markets, and the matching rate is driven to 1. With Decreasing WTP,

only matching rates differ across markets, and fees are driven to zero.
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Appendix

A Proofs for Section 4

Proof of Lemma 1. Suppose not, so Ū s is discontinuous at some point i∗ ∈ [0, 1]. Then

there exists an ϵ > 0 such that for all δ > 0, there exist a point i with |i − i∗| < δ and

|Ū s(i)− Ū s(i∗)| > ϵ.

First assume it is possible to find such a point with Ū s(i∗)−Ū s(i) > ϵ. By the third condi-

tion in the definition of competitive search equilibrium, type i∗ must obtain utility Ū s(i∗) =

Λs(τ)(
∫
us(i∗, j)dG−s(j)− ϕs) in some market with terms-of-trade τ = (ϕs, Gs)s=a,b ∈ T .

Continuity of us in its first argument implies we can choose δ sufficiently small such that∫
us(i∗, j)dG−s(j)−

∫
us(i, j)dG−s(j) < ϵ. Since 0 ≤ Λs(τ) ≤ 1, this means

Ū s(i) < Ū s(i∗)−ϵ = Λs(τ)

(∫
us(i∗, j)dG−s(j)− ϕs

)
−ϵ < Λs(τ)

(∫
us(i, j)dG−s(j)− ϕs

)
.

The first inequality comes from the assumed discontinuity in Ū s. The equation is the in-

difference condition of i∗. The second inequality uses the continuity of us. But this implies

that the terms-of-trade τ do not satisfy condition 1(a) in the definition of partial equilibrium

for the type i agent, a contradiction.

If instead we have Ū s(i)− Ū s(i∗) > ϵ, we reverse the role of i and i∗ in the proof, but the

argument is otherwise unchanged.

Proof of Lemma 2. First, we verify that the construction yields a partial equilibrium.

We check each condition of Definition 1:

1. (Optimal Search) Take any τ ∈ T p. By construction:

(a) Ū s(i) ≥ U s(i, τ,Λs(τ)) for all i ∈ Is, since this is exactly the first constraints of

Problem (7);

(b)
∫

Is Ū
s(i)dGs(i) =

∫
Is U

s(i, τ,Λs(τ))dGs(i), from the second constraints.

2. (Impossible Terms-of-Trade) For any τ /∈ T p, by construction there exist no (λs)s=a,b ∈
Λ satisfying the constraints of Problem (7). This directly implies there are no (λs)s=a,b

satisfying conditions 2(a) and 2(b) of Definition 1

3. (Profit Maximization) Take any τ ∈ T p with τ /∈ T . By construction, (Λs(τ), ϕs, Gs)s=a,b

does not solve Problem (7). Therefore, there exists some (λ̂s, ϕ̂s, Ĝs)s=a,b satisfying the
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constraints with strictly higher objective value. Let τ̂ = (ϕ̂s, Ĝs)s=a,b, so Λs(τ̂) = λ̂s.

Then τ̂ ∈ T p and V (τ̂,Λa(τ̂),Λb(τ̂)) > V (τ,Λa(τ),Λb(τ))

For the converse, take any partial equilibrium {T p, T, (Λs, Ū s)s=a,b} and any τ = (ϕs, Gs)s=a,b ∈
T . We must show that (Λs(τ), ϕs, Gs)s=a,b solves Problem (7). From Definition 1 parts 1(a)

and 1(b), this tuple satisfies the constraints of Problem (7). Suppose it is not optimal. Then

there exists some (λ̂s, ϕ̂s, Ĝs)s=a,b satisfying the constraints with strictly higher objective

value. Let τ̂ = (ϕ̂s, Ĝs)s=a,b. The constraints of Problem (7) imply τ̂ ∈ T p with Λs(τ̂) = λ̂s.

But then V (τ̂,Λa(τ̂),Λb(τ̂)) > V (τ,Λa(τ),Λb(τ)), so part 3 of Definition 1 implies τ /∈ T , a

contradiction.

Proof of Lemma 3.

Necessity. We first prove that any CSE
(
T p, T, (Λs, Ū s)s=a,b, µ

)
must satisfy these con-

ditions. Condition 4 is a piece of the definition of CSE. Condition 3 holds in any partial

equilibrium, and a CSE is a partial equilibrium. Thus Condition 3 holds as well.

Next, take any τ ∈ T . Let λs = Λs(τ). Lemma 2 implies that (λs, ϕs, Gs)s=a,b must solve

problem (7) with maximal value c (from the free entry condition in the definition of CSE).

We prove the solution to problem (7) must have a degenerate distribution Gs and moreover

must solve problem (8).

Suppose to the contrary that either Ga or Gb is non-degenerate. Let ks
1 be the largest

s-side agent with a binding incentive constraint:

ks
1 = max

{
i ∈ Is|Ū s(i) = λs

(∫
I−s

us(i, j)dG−s(j)− ϕs

)}
(25)

us is continuous in its first argument by assumption, and Ū s is continuous in a CSE (Lemma 1).

Then since Is is compact, the type ks
1 exists. Moreover, ks

1 exceeds all points in the support

of Gs, strictly so for a positive measure on at least one side given non-degeneracy.

Define new fees ϕs
1 ≡ us(ks

1, k
−s
1 ) − Ū s(ks

1)/λ
s. Common ranking implies ϕs

1 ≥ ϕs with

strict inequality on at least one side, proving ϕa
1 + ϕb

1 > ϕa + ϕb.
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We next prove that for any k′ < ks
1, Ū

s(k′) ≥ λs(us(k′, k−s
1 )− ϕs):

λs(us(k′, k−s
1 )− ϕs

1) = λs

∫
I−s

(us(k′, k−s
1 )− us(k′, j))dG−s(j)

+ λs

∫
I−s

us(k′, j)dG−s(j)− λsϕs
1

≤ λs

∫
I−s

(us(ks
1, k

−s
1 )− us(ks

1, j))dG
−s(j)

+ λs

∫
I−s

us(k′, j)dG−s(j)− λsϕs
1

= λsϕs
1 − λsϕs + λs

∫
I−s

us(k′, j)dG−s(j)− λsϕs
1

≤ Ū s(k′).

The first equality adds and subtracts
∫

I−s u
s(k′, j)dG−s(j) and reorders terms. The first

inequality uses supermodularity, together with k′ < ks
1 and k−s

1 ≥ j for all j in the support

of G−s. The second equality uses the definition of ϕs
1 as well as the binding constraint in the

definition of ks
1 in equation (25). The final inequality collects terms and uses the incentive

constraint in the original problem, Ū s(k′) ≥ λs
( ∫

I−s u
s(k′, j)dG−s(j)− ϕs

)
.

We do not claim Ū s(k′) ≥ λs(us(k′, k−s
1 )−ϕs) for k′ > ks

1. Instead, we construct monotone

sequences (ks
n, ϕ

s
n) by iteratively finding the highest type willing to pay more to match with

previous highest types. Suppose for some n ≥ 2, we have found non-decreasing sequences of

types ks
1 ≤ · · · ≤ ks

n−1 as well as sequences of fees ϕ
s
1, . . . , ϕ

s
n−1 with the following properties:

1. Ū s(ks
n−1) = λs

(
us(ks

n−1, k
−s
n−1)− ϕs

n−1

)
, s ∈ {a, b};

2. Ū s(k′) ≥ λs
(
us(k′, k−s

n−1)− ϕs
n−1

)
for all k′ < ks

n−1, k
′ ∈ Is, s ∈ {a, b};

3. ϕa
n−1 + ϕb

n−1 ≥ ϕa
1 + ϕb

1.

We have done this when n = 2 and proceed by induction to extend this to any n.

Let

ks
n ≡ max

(
argmax

k′∈Is

(
us(k′, ks

n−1)−
Ū s(k′)

λs

))
. (26)

That is, ks
n is the largest element of the set of maximizers of us(k′, ks

n−1) − Ū s(k′)/λs. The

first two properties above imply that for all k′ < ks
n−1,

us(k′, k−s
n−1)−

Ū s(k′)

λs
≤ ϕs

n−1 = us(ks
n−1, k

−s
n−1)−

Ū s(ks
n−1)

λs
.
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Thus ks
n ≥ ks

n−1. Also define

ϕs
n ≡ us(ks

n, k
−s
n )− Ū s(ks

n)

λs

The same arguments as for n = 1 imply ϕs
n ≥ ϕs

n−1 and Ū s(k′) ≥ λs(us(k′, k−s
n )− ϕs

n) for all

k′ < ks
n.

The sequences (ka
n, k

b
n) are nondecreasing on the compact set Ia × Ib and so converge to

(ka∗, kb∗) ∈ Ia × Ib. This means the ϕs converges as well, to (ϕa∗, ϕb∗), with ϕa∗ + ϕb∗ ≥
ϕa
1 + ϕb

1 > ϕa + ϕb. Continuity of Ū s and us implies

1. Ū s(ks∗) = λs
(
us(ks∗, k−s∗)− ϕs∗), s ∈ {a, b};

2. Ū s(k′) ≥ λs
(
us(k′, k−s∗)− ϕs∗) for all k′ < ks∗, k′ ∈ Is, s ∈ {a, b};

3. ϕa∗ + ϕb∗ ≥ ϕa
1 + ϕb

1 > ϕa + ϕb.

Finally, we claim the second point, the incentive constraint, extends to all k′ ∈ Is, including

k′ > ks∗. To prove this, suppose to the contrary that there is a k′ > ks∗ with Ū s(k′) <

λs
(
us(k′, k−s∗)− ϕs∗). Eliminate ϕs∗ using the first bullet point:

Ū s(k′) < λs
(
us(k′, k−s∗)− us(ks∗, k−s∗)

)
+ Ū s(ks∗).

But continuity of us and convergence of k−s
n to k−s∗ implies that there exists an n such that

Ū s(k′) < λs
(
us(k′, k−s

n )− us(ks∗, k−s
n )
)
+ Ū s(ks∗),

or equivalently

us(k′, k−s
n )− Ū s(k′)

λs
> us(ks∗, k−s

n )− Ū s(ks∗)

λs
,

From the definition of ks
n+1 (equation (26)), this implies k′ > ks∗, which in turn contradicts

monotonicity of the sequence ks
n with convergence to ks∗. So we conclude that Ū s(k′) ≥

λs
(
us(k′, k−s∗)− ϕs∗) for all k′ ∈ Is, s ∈ {a, b}.
Now let Gs∗ be the cumulative distribution function that is degenerate at ks∗ and consider

the alternative term-of-trade (λs, ϕs∗, Gs∗)s=a,b. By construction this satisfies the constraints

in problem (7) and it attains a higher value than the original term-of-trade because ϕa∗+ϕb∗ >

ϕa + ϕb and (λa, λb) is unchanged. This proves that the original term-of-trade does not

solve problem (7). That is, any solution to the problem (7) must have a degenerate type

distribution on both sides of the market.

This proves the first two conditions in the statement of the Lemma, since any solution

to problem (7) must have a degenerate type distribution and slack upward constraints, and
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thus also solve problem (8). Following the same steps, we also find that any solution to

problem (8) also solves problem (7).

Sufficiency. For sufficiency, we need to prove that a tuple satisfying the four conditions

constitutes both a partial equilibrium and a CSE. Let’s verify each requirement:

First, for the partial equilibrium conditions from Definition 1:

1. Optimal Search and Impossible Terms-of-Trade follow directly from condition 3;

2. For Profit Maximization, we proceed in steps. Condition 1 ensures each τ ∈ T is sep-

arating, and condition 2 ensures it solves problem (8). Given the equivalence between

problems (7) and (8) when condition 1 is satisfied, Lemma 2 allows us to map from the

solution to problem (8) back to a partial equilibrium. Thus condition 2 ensures that

each τ ∈ T satisfies the final partial equilibrium requirement, profit maximization.

Next, for the additional CSE requirements from Definition 2:

1. Free Entry is satisfied because condition 2 ensures each τ ∈ T achieves value exactly

equal to c;

2. Market Clearing follows directly from condition 4.

Thus, the tuple constitutes a CSE.

Proof of Lemma 4. This result follows directly from the incentive constraints in prob-

lem (7).

Choose any s-side type-i. If assume Ū s(i) > 0, the market for these agents clears in a CSE.

That there is a equilibrium terms-of-trade that attracts them, with matching probability λs,

fee ϕs, and partner distribution G−s(j). From problem (7):

Ū s(i) = λs

(∫
I−s

us(i, j)dG−s(j)− ϕs

)
Conversely, all other types i′ weakly prefer not to come to this market

Ū s(i′) ≥ λs

(∫
I−s

us(i′, j)dG−s(j)− ϕs

)
.

Subtracting inequalities gives us

Ū s(i′)− Ū s(i) ≥ λs

∫
I−s

(
us(i′, j)− us(i, j)

)
dG−s(j).
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Now we use the monotone WTP assumptions. With Increasing WTP, the right hand side

of this last inequality is nonnegative when i′ > i, so Ū s is nondecreasing. With Decreasing

WTP, the right hand side is nonnegative when i′ < i, so Ū s is nonincreasing.

Finally, if Ū s(i) = 0, nonnegativity of Ū s implies Ū s(i′) ≥ Ū s(i) for all i′, ensuring weak

monotonicity in this case as well.

B Proof for Section 5

Proof of Lemma 5. From Lemma 4, Monotone Willingness-to-Pay implies that market

utilities Ū s(i) are monotone. By Lebesgue’s differentiation theorem, any monotone function

is differentiable almost everywhere.

Now fix a τ ∈ T , with λs = Λs(τ) and Gs degenerate at ks for s ∈ {a, b}. Also assume

ka ∈ (0, 1), so that for all small positive ϵ, 0 ≤ ka − ϵ < ka + ϵ ≤ 1. The constraints from

problem (7) require

Ūa(ka + ϵ)− Ūa(ka) ≥ λa(ua(ka + ϵ, kb)− ua(ka, kb)),

Ūa(ka − ϵ)− Ūa(ka) ≥ λa(ua(ka − ϵ, kb)− ua(ka, kb)),

or

Ūa(ka + ϵ)− Ūa(ka)

ϵ
≥ λa (u

a(ka + ϵ, kb)− ua(ka, kb))

ϵ
,

Ūa(ka)− Ūa(ka − ϵ)

ϵ
≤ λa (u

a(ka, kb)− ua(ka − ϵ, kb))

ϵ
.

Since Ūa is differentiable almost everywhere, it must be Ūa′(ka) = λaua
1(k

a, kb) at such

points.

A symmetric argument establishes the result for side b.

Proof of Proposition 1. We seek to characterize an (i, i) market in a competitive search

equilibrium in the symmetric case. If such an equilibrium exists, then for all i = ka = kb,

the maximized value of Problem (9) must be c:

c = max
λ∈[0,λ̄]

2m(λ, λ)

(
u(i, i)− Ū(i)

λ

)
(27)

s.t. Ū(j)− Ū(i) ≥ λ(u(j, i)− u(i, i)) for all j < i

Ū(i) ≤ λu(i, i)
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We start by defining a threshold equilibrium utility Û(i) ≡ λ̄u(i, i). The last constraint of

problem (28) requires that Ū(i) ≤ λu(i, i) ≤ λ̄u(i, i) = Û(i).

Unconstrained Markets. First suppose the constraints are all slack. Using equation (4),

we can rewrite the unconstrained problem in terms of the number of agents per posting,

n = N(λ, λ):

c = max
n≥0

2
(
M∗(n)u(i, i)− nŪ(i)

)
(28)

where M∗(n) ≡ M(n, n). Then since M is strictly concave, the objective has a unique

maximum satisfying M∗′(n)u(i, i) = Ū(i). Plugging this into the fact that the objective

function must equal c, c = 2
(
M∗(n)u(i, i)− nŪ(i)

)
, we get

c

2u(i, i)
= M∗(n)− nM∗′(n)

Again using concavity of the matching function, the right hand side is increasing. It is equal

to zero at n = 0 and, since 2u(i, i)m(0, 0) > c, it exceeds c/(2u(i, i)) as n grows without

bound.3 Thus n is uniquely defined if an unconstrained (i, i) market exists in equilibrium;

call this value n∗(i).

If c > 0, once we know n = n∗(i), we can recover Ū(i) = Ū∗(i) from the free en-

try condition: c = 2
(
M∗(n∗(i))u(i, i) − n∗(i)Ū∗(i)

)
. We can also recover the matching

probability ℓ∗(i) = L(n∗(i), n∗(i)) from equation (3). Lastly, we can recover Φ∗(i) from

Ū∗(i) = ℓ∗(i)(u(i, i) − Φ∗(i)). Because c > 0, we must have m(ℓ(i), ℓ(i)) ≥ 0 and positive

fees, Φ∗(i) > 0.

If c = 0, we get n∗(i) = 0 from the described problem. In this case ℓ∗(i) = λ̄. Since

M∗(0) = 0, we cannot use the logic in the c > 0 case to recover Ū∗(i) and Φ∗(i). When

Ū(i) < Û(i), the maximized value of the right-hand side of equation (28) delivers a positive

value, which cannot be the solution. When Ū(i) = Û(i), the maximized value of the right-

hand side of equation (28) delivers a zero value, which can be a solution. Using the definition

of Û(i) and the last constraint of problem (27), we have ruled out any Ū(i) > Û(i). Thus

if market (i, i) is active in the competitive search equilibrium, it must be Ū∗(i) = Û(i).

Correspondingly, the matching probability is λ̄, and the fee charged is Φ∗(i) = u(i, i) −
Ū∗(i)/λ̄ = 0.

If there is a competitive search equilibrium with PAM, this determines the matching

probability and agent value when i = 0, since there are no incentive constraints in the (0, 0)

market.

3It is straightforward to prove from the definitions of M∗, m, n, and λ that limn→∞ M∗(n)−nM∗′(n) =
m(0, 0).
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Constrained Markets. Now suppose one or more of the constraints in problem (27) is

binding. Since the objective function is decreasing in Ū(i), if Ū(i) > Ū∗(i) the objective

evaluates to less than c for all values of λ. This is inconsistent with an active (i, i) market

in a competitive search equilibrium. We thus conclude that Ū(i) ≤ Ū∗(i) in any competitive

search equilibrium.

For Ū(i) < Ū∗(i), there are two values of n that satisfy the free entry condition

c = 2
(
M∗(n)u(i, i)− nŪ(i)

)
.

This is because (i) the right hand side is zero when n = 0; (ii) the right hand side is negative

for a sufficiently large value of n since the slope of M∗(n) is less than 1 and decreasing for

all positive n; (iii) the right hand side is strictly increasing and weakly larger than c when

n = n∗(i) since Ū(i) < Ū∗(i);4 and (iv) the right hand side is a strictly concave function of

n. This implies that there are two solutions to this equation, one in the interval [0, n∗(i)]

and the other in (n∗(i),∞).

Now since M∗(n) is concave and M∗(n) ≤ n implies M∗(0) = 0, agents’ matching rate

M∗(n)/n is a decreasing function of n. Thus we can equivalently state that for Ū(i) < Ū∗(i),

there are two solutions λ ∈ [0, λ̄] to the equation

c = 2m(λ, λ)

(
u(i, i)− Ū(i)

λ

)
.

One of the solutions is in the interval [ℓ∗(i), λ̄], while the other lies in the interval (0, ℓ∗(i)).

Which solution is relevant depends on whether we have Increasing or Decreasing WTP, and

so we treat those cases separately.

Increasing WTP (IWTP). First, suppose there is IWTP. The constraints in Prob-

lem (27), which only hold for j < i, imply a lower bound on λ:

λ ≥ sup
j<i

Ū(i)− Ū(j)

u(i, i)− u(j, i)
.

Now if the solution to problem (27) has ℓ(i) equal to the smaller solution, i.e. ℓ(i) ∈ (0, ℓ∗(i)),

then ℓ∗(i) is feasible and, since Ū(i) < Ū∗(i), attains a value in problem (27) that exceeds c,

a contradiction. So it must be that the solution to problem (27) has ℓ(i) equal to the larger

solution, ℓ(i) ∈ [ℓ∗(i), λ̄], whenever Ū(i) < Ū∗(i) in a competitive search equilibrium in the

IWTP case.

4If c = 0, then n∗(i) = 0 and the equation is satisfied at n = 0 even if Ū(i) < Ū∗(i).
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Next, we replace the global incentive constraints in Problem (27) with local ones:

c = max
λ∈[ℓ∗(i),λ̄]

2m(λ, λ)

(
u(i, i)− Ū(i)

λ

)
s.t. Ū ′(i) = λu1(i, i).

There is nothing to optimize here. Instead, these equations define the path of Ū(i) and ℓ(i):

c = 2m(ℓ(i), ℓ(i))

(
u(i, i)− Ū(i)

ℓ(i)

)
, Ū ′(i) = ℓ(i)u1(i, i), and ℓ(i) ∈ [ℓ∗(i), λ̄]. (29)

Since Ū(i) is continuous, the first equation and the restriction that ℓ(i) ∈ [ℓ∗(i), λ̄] ensures

ℓ(i) is continuous. Therefore from the second equation Ū ′(i) is continuous.

Now solve the first equation in (29) for Ū(i), differentiate with respect to i, and eliminate

Ū ′(i) using the second equation. This gives us equation (13) in the text and establishes that

it must hold at all i, since ℓ(i) is continuous and Ū(i) is continuously differentiable.

We next prove monotonicity. We know Ū(i) is increasing from the local incentive con-

straint Ū ′(i) = ℓ(i)u1(i, i). Because 2u(0, 0)m(0, 0) > c, Ū(0) > 0, and monotonicity of

Ū(i) implies that Ū(i) > 0 for i > 0. To prove ℓ(i) is increasing, we first establish that for

fixed i, h in equation (12) is single-peaked in λ ∈ [0, λ̄], achieving maximum value Ū∗(i) at

ℓ(i) = ℓ∗(i), the unconstrained case. To prove this, note that we have already established

that the objective function in problem (27) is single-peaked: for all Ū(i) < Ū∗(i), there exists

thresholds λ1 and λ2 with λ1 < ℓ∗(i) ≤ λ2 such that

c < 2m(λ, λ)

(
u(i, i)− Ū(i)

λ

)
⇔ λ ∈ (λ1, λ2).

Flipping this inequality around, we get that

Ū(i) < λ

(
u(i, i)− c

2m(λ, λ)

)
= h(λ, i) ⇔ λ ∈ (λ1, λ2).

This proves that h(λ, i) is single-peaked. Moreover, setting Ū(i) = Ū∗(i) and using a similar

logic implies that maxλ∈[0,λ̄] h(λ, i) = h(ℓ∗(i), i) = Ū∗(i).

When c > 0, since private information leads to ℓ(i) ≥ ℓ∗(i) in the IWTP case, this

means h1(ℓ(i), i) < 0. Then the differential equation (13) implies ℓ′(i) > 0, proving ℓ is

increasing. When c = 0, ℓ∗(i) = ℓ̄, so ℓ(i) ∈ [ℓ∗(i), λ̄] implies ℓ(i) = λ̄, weakly increasing

as well. Finally, to show that Φ(i) is increasing, we totally differentiate the constraint
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Ū(i) = λ(i)(u(i, i)− Φ(i)):

Ū ′(i) = λ(i)(u1(i, i) + u2(i, i)− Φ′(i)) + λ′(i)(u(i, i)− Φ(i)).

The local incentive constraint requires that Ū ′(i) = λ(i)u1(i, i), so we can write:

Φ′(i) = u2(i, i) +
λ′(i)

λ(i)2
Ū(i)

The right-hand side is positive because of common ranking, λ′(i) ≥ 0, and Ū(i) > 0. Thus

Φ(i) must be increasing as well.

Decreasing WTP (DWTP). With DWTP, the logic is reversed. The constraints in

Problem (27), specialized to the symmetric case imply an upper bound the meeting rate:

λ ≤ sup
j<i

Ū(j)− Ū(i)

u(j, i)− u(i, i)
.

We can use that to rule out the upper solution, which is dominated by ℓ∗(i). We thus conclude

that the solution to problem (27) has ℓ(i) equal to the smaller solution, ℓ(i) ∈ [0, ℓ∗(i)),

whenever Ū(i) < Ū∗(i) in a competitive search equilibrium in the DWTP case.

We again use the local incentive constraints to get a version of equation (29):

c = 2m(ℓ(i), ℓ(i))

(
u(i, i)− Ū(i)

ℓ(i)

)
, Ū ′(i) = ℓ(i)u1(i, i), and ℓ(i) ∈ [0, ℓ∗(i)). (30)

Again, we use continuity of Ū(i) to prove continuity of ℓ(i) and then use that to prove

continuity of Ū ′(i). Finally, the same algebraic manipulations give us equation (13) in the

text and establishes that it must hold at all i.

The monotonicity proof is also reversed. We know Ū(i) is decreasing from the local

incentive constraint Ū ′(i) = ℓ(i)u1(i, i). To prove ℓ(i) is decreasing, we use the same property

of h in equation (12). Now private information leads to ℓ(i) < ℓ(i∗) in the DWTP case,

implying h1(ℓ(i), i) < 0. Then the differential equation (13) implies ℓ′(i) < 0, proving ℓ is

decreasing.

Finally, since ℓ(i) is decreasing, for the c > 0 case, m(ℓ(i), ℓ(i)) is increasing and so the

free-entry condition c = 2m(ℓ(i), ℓ(i))Φ(i) implies Φ(i) is decreasing. When c = 0, we have

shown that ℓ(i) < ℓ∗(i) for i > 0 and hence m(ℓ(i), ℓ(i)) > m(λ̄, λ̄) = 0. Thus the free-entry

condition implies Φ(i) = 0, which is (weakly) increasing as well.
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Proof of Proposition 2.

Characterizing the Markets. We start by characterizing the (i, i) market with no in-

formation friction and c = 0, as in equation (12). For any i, the solution to problem (12) is

ℓ∗(i) = λ̄, as the marginal benefit of increasing the matching probability is always positive,

and the marginal cost is zero. We have shown that the terms-of-trade that attract type (0, 0)

terms-of-trade must be unconstrained, so ℓ(0) = ℓ∗(0) = λ̄. The equilibrium utility and the

fee can be accordingly characterized, with Ū(0) = λ̄u(0, 0) and ϕ(0) = 0.

We also showed that under increasing WTP, L(i) is increasing in i, λ̄ = ℓ(0) ≤ ℓ(i) ≤ λ̄,

∀i. Thus, it must be that ℓ(i) = λ̄. The matching probability for each unit of platform

effort is m(λ̄, λ̄) = 0. Thus, the free-entry condition does not impose any restrictions on the

fees. Instead, we have shown that local incentive constraints bind, Ū ′(i) = λ̄u1(i, i), and the

equilibrium utility also satisfies Ū(i) = λ̄(u(i, i)−Φ(i)). Totally differentiate this constraint

we obtain: Ū ′(i) = λ̄(∂1u(i, i) + ∂2u(i, i) − Φ′(i)). Since Ū ′(i) = λ̄u1(i, i), it must be that

Φ′(i) = ∂2u(i, i). This completes the characterization of the equilibrium outcomes.

Existence of PAM CSE. We conjecture that there is a PAM CSE and look at a market

that attracts type i agents on side a and type j agents on side b and i ̸= j. The condition(
λ̄ u1(i,i)

u1(i,j)
, λ̄ u1(i,i)

u1(i,j)

)
/∈ Λ rules out these deviations by making the matching probabilities that

are consistent with the local ICs infeasible under the matching function, and, thus, there

is a PAM CSE. WLOG, assume j > i > 0. In the conjectured market, the local incentive

constraints require

Ū ′(i) = λau1(i, j), Ū
′(j) = λbu1(j, i).

From the characterization of the PAM equilibrium, we have already shown that Ū ′(i) =

λ̄u1(i, i) and Ū ′(j) = λ̄u1(j, j). Combine it with the incentive constraints for the (i, j)

terms-of trade, we have two equations for (λa, λb):

λa = λ̄
u1(i, i)

u1(i, j)
, λb = λ̄

u1(j, j)

u1(j, i)
.

Because
(
λ̄ u1(i,i)

u1(i,j)
, λ̄ u1(i,i)

u1(i,j)

)
/∈ Λ, any combination of such matching probabilities is infeasible.

The argument so far imposes ICs on both sides of the market, which does not applies to

a (0, j) market because such a market does not have an IC on side-a. Under condition (b),
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the IC-b in such a (0, j) market requires for any k < j:

Ū(k)− Ū(j) ≥ λb(u(k, 0)− u(1, 0)) = 0.

We have shown that Ū ′(i) = λ̄u1(i, i) ≥ 0. The IC-b can be satisfied only when for any

k < j, Ū(k) = Ū(0). Creating a (j, j) market with (λa, λb) will be strictly more profitable

and feasible. This rules out a (0, j) market.

Proof of Proposition 3. We follow the structure of the proof of Proposition 2.

Characterization. Assume a competitive search equilibrium exists with PAM.With Com-

mon Ranking, Supermodularity, and Decreasing WTP, the same logic as in the proof of

Proposition 2 implies that: ℓ(0) = λ̄, Φ(0) = 0, Ū(0) = λ̄u(0, 0).

With decreasing WTP, Proposition 1 proves that Φ(i) is decreasing in i. If we can rule

out the possibilities of Φ(i) < 0 for i > 0, then we can establish that Φ(i) = 0. For Φ(i) < 0

in the equilibrium, it must ℓ(i) = λ̄. Suppose this is indeed the case, type 0 would be strictly

better off deviating to such terms-of-trade. More precisely, by participating to such a (i, i)

market, the type 0 receives a payoff of:

λ̄(u(0, i)− Φ(i)) > λ̄u(0, i) > λ̄u(0, 0) = Ū(0),

where the first inequality uses the assumption Φ(i) > 0, and the second inequality uses

common ranking. This violates the IC. Thus, for i > 0, Φ(i) = 0. Next, zero fees imply

that Ū(i) = ℓ(i)u(i, i). Totally differentiating this condition, we have Ū ′(i) = ℓ′(i)u(i, i) +

ℓ(i)(∂1u(i, i)+∂2u(i, i)). Imposing the IC Ū ′(i) = ℓ(i)u1(i, i), we have ℓ
′(i)u(i, i) = −ℓ(i)u2(i, i).

This differential equation, with the initial condition ℓ(0) = λ̄, has a solution:

ℓ(i) = λ̄ exp

(
−
∫ i

0

u2(ι, ι)

u(ι, ι)
dι

)
> 0.

Thus we can divide the condition Ū ′(i) = λ̄u1(i, i) by Ū(i) = λ̄u(i, i) to get Ū ′(i)
Ū(i)

= u1(i,i)
u(i,i)

.

Sufficient Conditions We look for sufficient conditions for a PAM CSE. We conjecture

that there is a PAM CSE and look at a market which attracts type i agents on side a and

type j agents on side b. If all such markets are unprofitable, then there is a PAM CSE. To

start, we assume that both i > 0 and j > 0.
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In the conjectured market, the local incentive constraints require

λa =
Ū ′(i)

u1(i, j)
, λb =

Ū ′(j)

u1(j, i)
.

Inverting the incentive constraints for type i and type j, we get:

ϕa + ϕb = u(i, j) + u(j, i)− Ū(i)

Ū ′(i)
u1(i, j)−

Ū(j)

Ū ′(j)
u1(j, i)

= u(i, j) + u(j, i)− u(i, i)
u1(i, j)

u1(i, i)
− u(j, j)

u1(j, i)

u1(j, j)
,

where in the second equality we used the solution from PAM CSE. Under assumption 6,

ϕa + ϕb < 0. Thus there is no terms-of-trade attracting (i, j) and delivers non-negative

payoffs to platforms.

Now consider a terms-of-trade attracting (0, j), where j > 0. In this case, the sum of the

fees is

ϕa + ϕb = u(0, j) + u(j, 0)− u(0, 0)
λ̄

λa
− u(j, j)

u1(j, 0)

u1(j, j)
.

Because λa ≤ 1,

ϕa + ϕb ≤ u(0, j) + u(j, 0)− u(0, 0)λ̄− u(j, j)
u1(j, 0)

u1(j, j)
.

Under assumption 6, ϕa + ϕb ≤ 0.

C Proof for Section 6

C.1 Proof of Lemma 7

We start by defining the objective function of the platforms in terms of (na, nb): W (na, nb) ≡
M(na, nb)

(
ua(0, 0) + ub(0, 0)

)
− Ūa(0)na − Ū b(0)nb. As M is strictly concave, there is a

unique maximizer to W (na, nb) given any Ūa(0) and Ū b(0). Correspondingly, there is a

unique combination (λa(0), λb(0)). In a PAM CSE, the market clearing condition requires

that limi→0+ σ(i) = 0. Otherwise, there is j ∈ Ib whose market does not clear.

Now we prove the continuity of λs(i) by contradition. Suppose, to the contrary of the

lemma, λs(i) is not continuous at 0. Let ls = limi→0+ λs(i). For i > 0,

c = V̂ (i, σ(i)) = m(λa(i), λb(i))

(
u(i, σ(i)) + ub(σ(i), i)− Ūa(i)

λa(i)
− Ū b(σ(i))

λb(i)

)
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Taking i →+ 0:

c = lim
i→+0

V̂ (i, σ(i)) = m(la0 , l
b
0)

(
ua(0, 0) + ub(0, 0)− Ūa(0)

la0
− Ū b(0)

lb0

)
.

If (la, lb) ̸= (λa(0), λb(0)), we have found another maximiser for the platform payoff at (0, 0).

A contradiction.

C.2 Proof of Lemma 8

It is convenient to use the following notations, where we write the payoff of platforms as a

function of (λs, ks)s=a,b

Ṽ (λa, λb, ka, kb) ≡ m(λa, λb)
∑
s=a,b

(
us(ks, k−s)− Ū s(ks)

λs

)
,

and

λ̂s(ks, k−s) =
Ū s′(ks)

us
1(k

s, k−s)
, for s = a, b. (31)

With this notation:

V̂ (i, j) = Ṽ (λ̂a(i, j), λ̂b(j, i), i, j).

Among the odes in the lemma, equation (21) comes directly from the local incentive con-

straints in lemma 5. We start by deriving equation (20).

For a fixed i ∈ Ia, σ(i) has to be the local maximum of V̂ (i, j). Otherwise, the platforms

can increase their payoffs by choosing j′ ̸= σ(i), violating the optimality condition. Thus,

the first-order condition holds V̂2(i, σ(i)) = 0. The same argument implies V̂1(i, σ(i)) = 0.

Given j, the impact of changing i on V̂ (i, j) can be written in terms of three effects: the

change in matching probabilities on two sides and the change in the utility from matches:

∂ log V̂ (i, j)

∂i

=
∂ log Ṽ (λ̂a(i, j), λ̂b(j, i), i, j)

∂λ̂a(i, j)
λ̂a
1(i, j) +

∂ log Ṽ (λ̂a(i, j), λ̂b(j, i), i, j)

∂λ̂b(i, j)
λ̂b
2(j, i) (32)

+
∂ log Ṽ (λ̂a(i, j), λ̂b(j, i), i, j)

∂i
. (33)

We now unpack the three effects in turns. Starting from the effect through matching prob-
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ability λa. From the definition of Ṽ :

∂ log Ṽ (λa, λb, ka, kb)

∂λa
=

(
ϵ1(λ

a, λb)

m(λa, λb)
Ṽ (λa, λb, ka, kb) +

Ūa(ka)

λa

)
m(λa, λb)

λaṼ (λa, λb, ka, kb)
.

In the PAM CSE, Ṽ (λa(i), λb(i), i, σ(i)) = c, and so we can write

∂ log Ṽ (λa(i), λb(i), i, σ(i))

∂λa(i)
= νa(i)

m(λa(i), λb(i))

cλa(i)
,

where we used the definition of νa(i) as in the lemma. The same logic establishes that
∂ log Ṽ (λa,λb,ka,kb)

∂λb = νb(i)m(λa(i),λb(i))
cλb(i)

. To derive λ̂s
2(i, j), we totally differentiate the identity

λa(i) = λ̂a(i, σ(i)) and λb(i) = λ̂b(σ(i), i) to get:

λa′(i) = λ̂a
1(i, σ(i)) + λ̂a

2(i, σ(i))σ
′(i)

λb′(i) = λ̂b
1(σ(i), i)σ

′(i) + λ̂b
2(σ(i), i).

Differentiating equation (31), we have:

λ̂a
2(i, σ(i)) = −λa(i)

ua
1,2(i, σ(i))

ua
1(i, σ(i))

, λ̂b
2(σ(i), i) = −λb(i)

ub
1,2(σ(i), i)

ub
1(σ(i), i)

.

So

λ̂a
1(i, σ(i)) = λa′(i) + σ′(i)λa(i)

ua
1,2(i, σ(i))

ua
1(i, σ(i))

,

λ̂b
1(σ(i), i) =

1

σ′(i)

(
λb′(i) + λb(i)

ub
1,2(σ(i), i)

ub
1(σ(i), i)

)
.

Putting this together, we have

∂ log Ṽ (λ̂a(i, j), λ̂b(j, i), i, j)

∂λ̂a(i, j)
λ̂a
1(i, j) = νa(i)

m(λa(i), λb(i))

c

(
λa′(i)

λa(i)
+ σ′(i)

ua
1,2(i, σ(i))

ua
1(i, σ(i))

)
,

∂ log Ṽ (λ̂a(i, j), λ̂b(j, i), i, j)

∂λ̂b(i, j)
λ̂b
2(j, i) = νb(i)

m(λa(i), λb(i))

c

(
−
ub
1,2(σ(i), i)

ub
1(σ(i), i)

)
.

Finally, we directly compute the effect of changing matching partners on utility:

∂ log Ṽ (λa, λb, ka, kb)

∂i
=

m(λa, λb)

Ṽ (λa, λb, ka, kb)

(
ua
1(k

a, kb) + ub
2(k

b, ka)− Ūa′(ka)

λa

)
.

The incentive constraint (31) and the fact that in the PAM CSE, Ṽ (λa(i), λb(i), i, σ(i)) = c
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means that we can write this as

∂ log Ṽ (λa, λb, ka, kb)

∂i
=

m(λa, λb)

c
ub
2(k

b, ka).

Now we have all terms needed to calculate ∂V̂ (i,j)
∂i

. Setting ∂V̂ (i,j)
∂i

= 0 and multiplying both

sides by c
m(λa(i),λb(i)

, we get the following equation:

0 = νa(i)

(
λa′(i)

λa(i)
+ σ′(i)

ua
1,2(i, σ(i))

ua
1(i, σ(i))

)
− νb(i)

ub
1,2(σ(i), i)

ub
1(σ(i), i)

+ ub
2(σ(i), i).

Similarly, for the b side:

0 = −νa(i)
ua
1,2(i, σ(i))

ua
1(i, σ(i))

+ νb(i)
1

σ′(i)

(
λb′(i)

λb(i)
+

ub
1,2(σ(i), i)

ub
1(σ(i), i)

)
+ ua

2(i, σ(i)).

Using the definition of ι(i), we reach the formula as in the lemma.

Now we move on to equation (22). In our model, matches are one-to-one. Thus, ∀i ∈ Ia,

the accumulated numbers of matches on the a side must equal the accumulated numbers of

matches on the b side: ∫ i

0

λa(i′)ḡa(i′)di′ =

∫ σ(i)

0

λb(σ−1(j′))ḡb(j′)dj′.

The equation above has to hold for any i, we differentiate both sides with respect to i:

λa(i)ḡa(i) = λb(i)ḡb(σ(i))σ′(i).

With the assumption that ḡb(j) > 0 for all j ∈ Ib, we derive the ode for σ(i):

σ′(i) =
λa(i)

λb(i)

Iaḡa(i)

Ibḡb(σ(i))
.

For the market clearing condition to hold for all types, we further require that σ(0) = 0 and

σ(1) = 1. This conclude the proof.

C.3 Details of Model with Observable Types

A market is a vector τ = (ϕs, Gs)s=a,b satisfying ϕs ≡ (ϕs
1, . . . , ϕ

s
I) ∈ RI and Gs ≡

(Gs
1, . . . , G

s
I) ∈ ∆I , the standard probability simplex. We interpret ϕs

i to be the fee paid

by a type i agent on side s of the market when he matches; and Gs
i to be the share of type i
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agents on side s of the market. Let M0 denote the set of markets, i.e. the set of vectors sat-

isfying these conditions. With this definition of markets, the value of platforms and agents

are accordingly

Ṽ (τ) ≡ m
(
Na(τ), N b(τ)

)( I∑
i=1

ϕa
iω

a
i +

I∑
j=1

ϕb
jω

b
j

)
, (34)

and

Ũ s
i (τ) ≡

1

N s(τ)
m
(
Na(τ), N b(τ)

)( I∑
j=1

G−s
j ui,j − ϕs

i

)
, (35)

with

Ũ s
i (τ) ≡


∞

0

−∞

if
I∑

j=1

G−s
j ui,j ⋛ ϕs

i and N s(τ) = 0. (36)

The logic closely follows equations (2)–(??), extended to allow for type-specific fees.

Definition 5 A partial equilibrium with observable types {N,Mp,M, Ū} is a map-

ping N : {a, b}×M0 → R+, two nonempty sets M ⊆ Mp ⊆ M0, and strictly positive numbers

Ū ≡ Ū1, . . . , ŪI such that:

1. (Optimal Search) ∀m ∈ M0, s ∈ {a, b}, and i ∈ I, Ūi ≥ Ũ s
i (m); and if N s(m) > 0,

Ūi = Ũ s
i (m) for some i ∈ I;

2. (Promise Keeping) Mp = {m ∈ M0|Gs
i > 0 ⇒ Ūi = Ũ s

i (m)};

3. (Profit Maximization) M = argmaxm∈Mp Ṽ (m).

With these definition of partial equilibrium, the definition of a competitive search equilibrium

with observable types is:

Definition 6 A competitive search equilibrium with observable types is a partial

equilibrium {N,Mp,M, Ū} and a measure µ on the set of active market M such that

1. (free entry) c = V (m) for all m ∈ M ;

2. (market clearing) ω̄i =
∫
M

[∑
s=a,b G

s
iN

s(m)
]
dµ(m).

We start by showing that the outcomes of a competitive search equilibrium can be

characterized by a set of optimization problem. Consider the following problem given
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Ū ≡ U1, . . . , UI :

V̄ = max
m∈M

(λaλb)−
1−γ
2γ

∑
s=a,b

I∑
i=1

ϕs
iG

s
i , (37)

s.t. Ūi ≥ λs

(
I∑

j=1

ω−s
j ui,j − ϕs

i

)
with equality if Gs

i > 0,

for s = a, b and i ∈ {1, . . . , I}

We say that (M, V̄ ) solves optimization problem (37) if V̄ is the maximum value of the

optimization problem (37) and any m ∈ M achieves this value given Ū .

Lemma 11 Suppose {M, V̄, Ū} is a partial equilibrium with observable types. Then (M, V̄ )

must solve problem (37) given Ū . Conversely, if (M, V̄ ) solves optimization problem (37)

given Ū , then {M, V̄, Ū} is a partial equilibrium with observable types.

Proof. First, suppose {M, V̄, Ū} is a partial equilibrium, yet (M, V̄ ) is not a solution to

(37). Thus there is m′ ∈ M such that the constraint of (37) is satisfied and V (m′) > V̄ . This

contradicts point 2 of the definition for a partial equilibrium.

Conversely, suppose (M, V̄ ) is the solution to (37) given Ū yet (M, V̄, Ū) is not a partial

equilibrium. If ∃m ∈ M such that V (m) ̸= V̄ . This violates that M is the solution to (37)

because either m is not a maximizer or V̄ is not the optimal value; If there is m ∈ M that

violates condition 2 of the definition for a partial equilibrium, this m satisfies constraints of

(37), and V (m) > V̄ , which contradicts (M, V̄ ) solving (37).

We first restrict attention to separating competitive search equilibrium, then show that

under monotonicity of fi,j in j, any competitive search equilibrium must be separating. With

separation, the problem (37) can be analyzed in two steps: (1) conditional on a fixed pair

(i, j), find the (λ,ϕ) that maximizes the platform’s value. (2) choose (i, j) that delivers the

highest value to platforms. We define this step-one problem as

Vi,j = max
λ>0,ϕ>0

m(λa, λb)
(
ϕa + ϕb

)
, (38)

s.t.

Ūi = λa (ui,j − ϕa) ,

Ūj = λb
(
uj,i − ϕb

)
.

With observable types, the relevant value for the solution of problem 38 is the joint

surplus in a (i, j) match, which we define as fij ≡ ui,j + uj,i.
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Lemma 12 Given (i, j), a unique solution to (38) exists:

λa
i,j =

Ūi

1−γ
2
fi,j

, λb
i,j =

Ūj

1−γ
2
fi,j

, ϕa
i,j = ui,j −

1− γ

2
fi,j, ϕ

b
i,j = uj,i −

1− γ

2
fi,j,

Vi,j = γ

(
1− γ

2

) 1−γ
γ (

ŪiŪj

)− 1−γ
2γ

f
1
γ

i,j.

Proof. By definition:

Vi,j = max
λa,λb

v(λa, λb) = max
λa,λb

m(λa, λb)

(
fi,j −

Ūi

λa
− Ūj

λb

)
.

The partial derivatives of Vi,j are:

∂ log v

∂λs
(λa, λb) =

∂sm(λa, λb)

m(λa, λb)
+

Ūi

λs2

1

fi,j − Ūi

λa − Ūj

λb

.

For λa, λb > 0 and fi,j − Ūi

λa − Ūj

λb > 0, this implies that

∂ log v

∂λa
(λa, λb) ⋛ 0 ⇔ (1− 1− γ

2
)
Ūi

λa
+

1− γ

2

Ūj

λb
⋛

1− γ

2
fi,j

∂ log v

∂λb
(λa, λb) ⋛ 0 ⇔ (1− 1− γ

2
)
Ūj

λb
+

1− γ

2

Ūi

λa
⋛

1− γ

2
fi,j

Thus when λa and λb are both close to 0, raising either of them increases v. When both

are sufficiently large, reducing either of them increases v. If Ūi

λa >
Ūj

λb , 0 < γ < 1 implies

(1− 1−γ
2
) Ūi

λa +
1−γ
2

Ūj

λb > (1− 1−γ
2
)
Ūj

λb +
1−γ
2

Ūi

λa , and so we can have ∂v
∂λa (λ

a, λb) > 0 > ∂v
∂λb (λ

a, λb),

i.e. we increase v by increasing λa and decreasing λb. We can reach the opposite conclusion

when Ūi

λa <
Ūj

λb . This implies that v is single-peaked in λ such that λa, λb > 0 and fi,j − Ūi

λa −
Ūj

λb > 0. That peak comes at λa = Ūi
1−γ
2

fi,j
and λb =

Ūj
1−γ
2

fi,j
.

Plugging the optimal solution back to the incentive constraints of participants and ob-

jective function, we reach the results in lemma.

It turns on a competitive search equilibrium must be separating, if the joint value fi,j ̸=
fi,j′ for a fixed i and j ̸= j′. This is the assumption made in models from literature such as

Eeckhout and Kircher (2010). This result comes from that a non-separating market can be

viewed as a collection of separating markets, with an additional restriction that all of these

separating markets must share the identical contact rates. When fi,j varies in the matching

partners’ types (dimension j), this identical contact rate constraint is binding and strictly

decreases payoffs for the platform.
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Lemma 13 If fi,j ̸= fi,j′ for j ̸= j′, any competitive search equilibrium with observable types

is separating.

Proof. We first replace (ϕa
i , ϕ

b
j) in the objective function by the constraints in problem (37):

The original problem is now an unconstrained problem in terms of (ϕa, ϕb) and (ωa
i , ω

b
j):

max
λ>0,Gs∈∆I

m(λa, λb)
I∑

i=1

I∑
j

ωa
i ω

b
j

(
fi,j −

Ūi

λa
− Ūj

λb

)
.

Given any Ū , we have can write the value of objective function as:

I∑
i=1

I∑
j=1

ωa
i ω

b
jm(λa, λb)

(
fi,j −

Ūi

λa
− Ūj

λb

)
≤

I∑
i=1

I∑
j

ωa
i ω

b
jV

∗
i,j,

where the inequality comes from the fact V ∗
i,j is a solution to problem (38) and any positive

(λa, λb) is feasible for (38). The inequality holds with equality only if λs = λs
i,j for any (i, j)

such that Gs
iG

−s
j > 0.

Suppose there is a CSE that is non-separating while fi,j is strictly increasing in j. WLOG,

assume there is τ ∈ T such that ωb
j > 0, ωb

j′ > 0, and j ̸= j′. From lemma 12, for some i

such that Ga
i > 0:

λa
i,j =

Ūi

1−γ
2
fi,j

̸= Ūi

1−γ
2
fi,j′

= λa
i,j′ .

This means λa cannot equal to both contact rates in separating markets. This means:

c =
I∑

i=1

I∑
j

ωa
i ω

b
j(λ

aλb)−
1−γ
2γ

(
fi,j −

Ūi

λa
− Ūj

λb

)
<

I∑
i=1

I∑
j

ωa
i ω

b
jV

∗
i,j.

Thus one of the separating markets such that ωa
i ω

b
j > 0 must yield strictly higher payoff

for the platform. This contradicts to the second condition of the definition for a partial

equilibrium (,and thus competitive search equilibrium).

Lemma 13 implies that we should only look for separating competitive search equilibrium.

From here on we use the enumeration defined in section 2.5, and index markets by the pair

that shows up on the two sides. Given the results in Lemma 12, the step-two problem is to

find the set of (i, j) that maximize platforms’ value:

V̄ = max
i,j

Vi,j. (39)

Naturally, the partial-equilibrium set of markets M is the set of maximizers to problem (39).
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In the next proposition, we consider the CES matching function and show our results resem-

bles the ones in Eeckhout and Kircher (2010), although in our context the matching function

takes three parties.

C.4 Proof for Proposition 4

From (39), M = argmaxi,j Vi,j. This is a maximization problem on a finite set. Thus a

solution (and correspondingly a partial equilibrium) must exist given Ū . We now show (1)

M must have stated sorting pattern and (2) we can construct a unique competitive search

equilibrium. From lemma 12:

Vi,j = ∂PM(na, nb, 1)(ui,j + uj,i),

where (na, nb) solves

∂naM(na, nb, 1)(ui,j + uj,i) = Ūi, ∂nbM(na, nb, 1)(ui,j + uj,i) = Ūj.

Using the function form we find:

(
(na)−γ + (nb)−γ + 1

)− 1
γ
−1

(na)−γ−1 =
Ūi

ui,j + uj,i

(
(na)−γ + (nb)−γ + 1

)− 1
γ
−1

(na)−γ−1 =
Ūj

ui,j + uj,i

Raising both side to the power of γ
1+γ

:

(
(na)−γ + (nb)−γ + 1

)−1
(na)−γ =

(
Ūi

ui,j + uj,i

) γ
1+γ

(
(na)−γ + (nb)−γ + 1

)−1
(nb)−γ =

(
Ūj

ui,j + uj,i

) γ
1+γ

Summing them:

1−
(
(na)−γ + (nb)−γ + 1

)−1
=

(
Ūi

ui,j + uj,i

) γ
1+γ

+

(
Ūj

ui,j + uj,i

) γ
1+γ

Thus: (
(na)−γ + (nb)−γ + 1

)−1
= 1−

(
Ūi

ui,j + uj,i

) γ
1+γ

−
(

Ūj

ui,j + uj,i

) γ
1+γ
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and

∂PM(na, nb, 1) =

[
1−

(
Ūi

ui,j + uj,i

) γ
1+γ

−
(

Ūj

ui,j + uj,i

) γ
1+γ

] 1+γ
γ

Vi,j =
[
f

γ
1+γ

i,j − Ū
γ

1+γ

i − Ū
γ

1+γ

j

] 1+γ
γ

If f
γ

1+γ

i,j is supermodular, then for any (i, j) such that i ̸= j:

V
γ

1+γ

i,i + V
γ

1+γ

j,j > 2V
γ

1+γ

i,j ,

for any Ūi and Ūj.

If fi,j is log-supermodular. We prove PAM by contradiction. More precisely, we want

to show that if (i, j) ∈ M , then i = j. Suppose otherwise. The formula of Vi,j implies

Vi,jVj,j

V 2
i,j

=

(
fi,ifj,j
f 2
i,j

) 1
γ

> 1.

Thus max {Vi,i, Vj,j} > Vi,j. It is profitable for the platforms to deviate from the focal active

market to either a market with (i, i) or a market (j, j). A contradiction to the optimality.

So any separating partial equilibrium has markets with identical types on both sides, which

satisfies the definition of positive assortative matching.

We then show there is a unique separating competitive search equilibrium. In a compet-

itive search equilibrium, V̄ = Vi,i = c:

c = Vi,j = γ

(
1− γ

2

) 1−γ
γ (

ŪiŪj

)− 1−γ
2γ

f
1
γ

i,j.

Solving this equation gives a unique value of Ūi. With this value of Ūi, there is a unique

number of participants per posting ns
i,i from Lemma 12. Lastly, from the market to clear

for type i, we compute NP (mi,i) = ω̄i

2ni,i
. This construction leads to unique separating

competitive search equilibrium with positive assortative matching.

If fi,j is log-submodular. Suppose there are two active markets for (i1, j1) and (i2, j2)

and i1 > i2, j1 > j2.

Vi1,j2Vi2,j1

Vi1,j1Vi2,j2

=

(
fi1,j2fi2,j1
fi1,j1fi2,j2

) 1
γ

> 1.

This contradicts to optimality of (i1, j1) or (i2, j2).
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The negative assortative matching in M and the clear marketing implies that all active

markets have the pairs in the form of (1, I), (2, I − 1), ...., (I/2, I/2 + 1) if I is even, and in

the form of (1, I), (2, I − 1), ...., ((I − 1)/2, (I − 1)/2) if I is odd. Take each of these pair

(i, j), we clear the market in the following order. First solve Ūi and Ūj as solution to:

c = γ

(
1− γ

2

) 1−γ
γ (

ŪiŪj

)− 1−γ
2γ

f
1
γ

i,j,

ω̄i

ω̄j

=
Ūi

Ūj

.

This is a system of two equations with unique solution (Ūi, Ūj). We can solve from lemma

12 the correspondingly ns
i,j. The measure of postings is given by NP

i,j = NP (i, j) = ω̄i

na
i,j
.
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